簡易檢索 / 詳目顯示

研究生: 黃元正
Huang, Yuan-Cheng
論文名稱: 奈米石墨帶的電子性質
Electronic Properties of One-Dimensional Graphene Nanoribbons
指導教授: 林明發
Lin, M. F.
張振鵬
Chang, C. P.
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 151
中文關鍵詞: 電子性質奈米石墨帶
外文關鍵詞: Graphene Nanoribbons, Electronic Properties
相關次數: 點閱:82下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以緊束模型探討一維 (1D) 奈米石墨帶的電子性質。這些不同石墨帶的電子性質,隨著石墨帶幾何構造、所外加的電場以及磁通量而有著特性上的變化。首先,對層狀石墨帶而言,層與層之間的交互作用顯著地影響能帶構造、能隙、自由載子以及態密度。這些態密度顯示著許多特殊的構造,包含平台構造、不連續構造以及發散譜線。其次,有效電場可以調制能帶構造、改變能帶間隔、產生許多新的邊界能態、調節能隙大小、並引發金屬 -- 半導體(或半導體 -- 金屬)之間的轉換。由有效電場造成的效應,將直接反應在態密度頻譜之中,諸如,特殊譜線結構的產生、譜線位置的移動、譜線強度的變化以及能隙大小的改變。此外,有效電場更深深地影響低能處的光吸收譜,期間有著:第一吸收峰頻率的改變;譜線強度的變化;甚至,有著新吸收峰的生成。石墨帶之低能量的光吸收譜同樣也受到磁場有效的調制,其中,磁場能改變1D拋物線能帶使之轉換成Hall-edge能級以及0D Landau能級。在磁場作用之下,高度簡併的Landau能級,能出現在足夠寬的石墨帶之能帶中,並且,石墨帶的寬度愈寬產生的Landau能級數也愈多。此外,石墨帶Landau峰的頻率及特殊譜線結構的數量,並不受石墨帶的寬度改變而有所影響,主要是隨著外加磁場而變化的。上述之結果,有助於我們對石墨之磁電子性質、磁電子激發及磁光吸收譜的計算。

    Electronic properties of one-dimensional (1D) graphene nanoribbons were studied by the tight-binding model. They were strongly dependent on the geometric structures, the
    electric field, and the magnetic flux. For the layered graphene ribbons, the interlayer interactions significantly affected band structure, energy gap, free carriers, and density of states (DOS). DOS exhibited many special structures, including plateau, discontinuities,
    and divergent peaks. The effective electric field modified the energy dispersions, altered the subband spacing, produced the new edge state, changed the band gap, and caused the metal-semiconductor (or semiconductor-metal) transitions. Due to electric field, the effects
    were completely reflected in the features of DOS such as the generation of special structures, the shift of peak position, the change of peak height, and the alternation of band gap. Moreover, the effective electric field had great influence on the low-energy absorption spectra. It could change frequency of the first peak, alter the peak height, and even produce the new peaks. The perpendicular magnetic field in graphene ribbons strongly modified
    the low-energy spectra. It could change the 1D parabolic bands into the Hall-edge states and the 0D Landau levels. Landau levels appeared when the ribbon width was sufficiently wide. More Landau levels came out with the increase of width. The magnetic field dramatically
    changed absorption peaks, such as the number, the intensity, the frequency, and the symmetric form. The absorption frequencies of the Landau peaks could hardly depend on the ribbon width while the opposite was true for the spectral intensity. The results mentioned above are useful in understanding a 2D monolayer graphite, e.g., magneto-electronic properties, magneto-electronic excitations, and magneto-optical absorption spectra.

    Abstract ................................................ 4 Chapter 1. Introduction............................................. 5 References ............................................. 15 Chapter 2. Electronic and optical properties of a nanographite ribbon in an electric field 2.1 Introduction ........................................... 20 2.2 The tight-binding method ........................... 23 2.3 Electronic properties ............................................. 25 2.4 Conclusions ........................................ 39 2.5 Appendix ........................................... 41 References ............................................. 43 Chapter 3. Influence of electric field on the low-energy electronic properties of few-layer graphene nanoribbons 3.1 Introduction ....................................... 46 3.2 The tight-binding model ............................ 51 3.3 The electronic properties .......................... 56 3.4 Conclusions ........................................ 67 3.5 Appendix ........................................... 70 References ............................................. 74 Chapter 4. Landau levels and magneto-optical properties of graphene ribbons 4.1 Introduction ....................................... 78 4.2 Peierls coupling tight-binding model ............... 80 4.3 Landau levels ...................................... 81 4.4Magneto-optical properties .......................... 87 4.5 Conclusions ........................................ 95 References ............................................. 96 Chapter 5. Magnetic and quantum confinement effects on electronic and optical properties of graphene ribbons 5.1 Introduction ....................................... 99 5.2 Theory and method ................................. 101 5.3Magneto-electronic and optical properties .......... 103 5.4 Conclusions ....................................... 119 References ............................................ 121 Chapter 6. Electronic properties of bilayer graphene ribbons with Bernal stacking in a strong magnetic field 6.1 Introduction ...................................... 124 6.2 Tight-binding model ............................... 125 6.3Magneto-optical properties ......................... 127 6.4 Conclusions ....................................... 133 References ............................................ 134 Chapter 7. Magnetoelectronic structures of multilayer graphene ribbons 7.1 Introduction ...................................... 136 7.2 Peierls coupling tight-binding model .............. 137 7.3Magnetoelectronic structures ....................... 138 7.4 Conclusions ....................................... 142 References ............................................ 144 Chapter 8. Summary and future research ................ 145

    Chapter 1
    [1] P. R. Wallace, Phys. Rev. 71, 622 (1947).
    [2] S. Iijima, Nature 354, 56 (1991).
    [3] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical properties of carbon nanotubes,
    Imperial College Press (1998).
    [4] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, Nature 318,
    162 (1985).
    [5] J. Liu, H. Dai, J. H. Hafner, D. T. Colbert, R. E. Smalley, S. J. Tans and C. Dekker,
    Nature 385, 780 (1997).
    [6] M. Fujita, K. Wakabayashi, K. Nakada and K. Kusakabe: J. Phys. Soc. Jpn. 65,
    1920 (1996).
    [7] J. D. Bernal, Proc. R. Soc. London Ser. A 106, 749 (1924).
    [8] R. R. Haering, Can. J. Phys. 36 , 352 (1958).
    [9] J. W. McClure, Carbon 7, 425 (1969).
    [10] J. C. Charlier, J. P. Michenaud, and X. Gonze, Phys. Rev. B 46, 4531 (1992).
    [11] J. C. Charlier, X. Gonze, and J. P. Michenaud, Phys. Rev. B 43, 4579 (1991).
    [12] J. C. Charlier, X. Gonze, and J. P. Michenaud, Carbon 32, 289 (1994).
    [13] M. Murakami, S. Iijima, and S. Yoshimura, J. Appl. Phys. 60, 3856 (1986).
    [14] B. L. V. Prasad, H. Sato, T. Enoki, et al., Phys. Rev. B 62, 11209 (2000).
    [15] M. Zhang, D. H. Wu, C. L. Xu, et al., Nanostruct Matt. 10, 1145 (1998).
    [16] M. Yudasaka, Y. Tasaka, M. Tanaka, et al., Appl. Phys. Lett. 64, 3237 (1994).
    [17] C. Berger et al., Science 312, 1191 (2006).
    [18] C. Berger et al., J. Phys. Chem. B 108, 19 912 (2004).
    [19] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V.
    Grigorieva , et al., Nature 438, 197 (2005).
    [20] Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
    [21] H. Hiura, Applied Surface Science 222, 374 (2004).
    [22] M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys. Soc. Jpn. 65,
    1920 (1996).
    [23] M. Fujita, M. Igami, and K. Nakada, J. Phys. Soc. Jpn. 66, 1864 (1997).
    [24] K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 54,
    17954 (1996).
    [25] K. Wakabayashi, M. Sigrist, and M. Fujita, J. Phys. Soc. Jpn. 67, 2089 (1998).
    [26] Y. Miyamoto, K. Nakada, and M. Fujita, Phys. Rev. B 59, 9858 (1999).
    [27] K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Phys. Rev. B 59, 8271 (1999).
    [28] F. L. Shyu, and M. F. Lin, J. Phys. Soc. Jpn. 69, 3529 (2000).
    [29] K. Tada, and K. Watanabe, Phys. Rev. Lett. 88, 127601 (2002).
    [30] F. L. Shyu, M. F. Lin, C. P. Chang, R. B. Chen, J. S. Shyu, Y. C. Wang, and C. H.
    Liao, J. Phys. Soc. Jpn. 70, 3348 ( 2001). (the figures for armchair ribbons in this
    manuscript will be revised because of the numerical calculation errors).
    [31] C. W. Chiu, F. L. Shyu, C. P. Chang, R. B. Chen, and M. F. Lin, J. Phys. Soc. Jpn.
    72, 170 (2003).
    [32] C. P. Chang, C. L. Lu, F. L. Shyu, R. B. Chen, Y. C. Huang, and M. F. Lin, Physica
    E 27, 82 (2005).
    [33] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, and S. V. Dubonos,
    I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
    [34] J. S. Bunch, Y. Yaish, M. Brink, K. Bolotin, and P. L. McEuen, Nano. Lett. 5, 287
    (2005).
    [35] Y. B. Zhang, J. P. Small, W. V. Pontius, and P. Kim, Appl. Phys. Lett. 86, 073104
    (2005).
    [36] Y. H. Wu, B. J. Yang, B. Y. Zong, H. Sun, Z. X. Shen, and Y. P. Feng, J. Mat.
    Chem. 14, 469 (2004).
    [37] E. McCann, and V. I. Fal’ko, Phys. rev. Lett. 96, 086805 (2006).
    [38] V. P. Gusynin, and S. G. Sharapov, Phys. rev. Lett. 95, 146801 (2005).
    [39] J. H. Ho, C. P. Chang, and M. F. Lin, Phys. Lett. A 352, 446 (2006).
    [40] J. H. Ho, C. P. Chang, R. B. Chen, and M. F. Lin, Phys. Lett. A, 357, 401(2006).
    [41] C. L. Lu, C. P. Chang, Y. C. Huang, J. M. Lu, C. C. Hwang, and M. F. Lin, J. of
    Phys.: Conden. Matt. 18, 5849 (2006)
    [42] C. L. Lu, C. P. Chang, Y. C. Huang, R. B. Chen, M. F. Lin, Phys. Rev. B 73,
    144427 (2006).
    [43] X. Zhou, H. Chen, O.Y. Zhong-can, J. Phys.: Condens. Matter 13, L635 (2001).
    [44] Y.H. Kim, K.J. Chang, Phys. Rev. B 64, 153404 (2001).
    [45] J. OKeeffe, C.Y. Wei, K.J. Cho, Appl. Phys. Lett 80, 676 (2002).
    [46] Y. Li, S.V. Rotkin, U. Ravaioli, Nano. Lett. 3, 183 (2003).
    [47] C. G. Rocha, M. Pacheco, Z. Barticevic, and A. Latge, Phys. Rev. B 70, 233402
    (2004).
    [48] K.H. Khoo, M.S.C. Mazzoni, S.G. Louie, Phys. Rev. B 69, 201401 (2004).
    [49] Y. W. Son, Ihm J, Cohen M L, Louie S G and Choi H J Phys. Rev. Lett. 95, 216602
    (2005).
    [50] J. Guo, IEEE Trans. Electron Devices 51, 172 (2004).
    [51] J. Guo, J. Appl. Phys. 98, 063519 (2005).
    [52] S. O. Koswatta et al., Appl. Phys. Lett. 89, 023125 (2006).
    [53] C. P. Chang, Y. C. Huang, C. L. Lu, J. H. Ho, T. S. Li, and M. F. Lin, Carbon 44,
    508 (2006).
    [54] F. L. Shyu, and M.F. Lin, J. Phys. Soc. Jpn. 69, 3529 (2000).
    [55] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I.
    V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
    [56] A. K. Geim, and K. S. Novoselov, Nature Materials 6, 183 (2007).
    [57] D. V. Khveshchenko, Phys. Rev. Lett. 87, 246802 (2001).
    [58] V. P. Gusymin, and S. G. Sharapov, Phys. Rev. Lett. 95, 146801 (2005).

    Chapter 2

    [1] M. Fujita, K. Wakabayashi, K. Nakada et al., J. Phys. Soc. Jpn. 65 1920-1923
    (1996).
    [2] K. Nakada, M. Fujita, G. Dresselhaus et al., Phys. Rev. B 54 17954 (1996).
    [3] K. Wakabayashi, M. Sigrist, M. Fujita, J. Phys. Soc. Jpn. 67 2089-2093 (1998).
    [4] Y. Miyamoto, K. Nakada, M. Fujita, Rev. B 59 9858-9861 (1999).
    [5] T. Kawai, Y. Miyamoto, O. Sugino et al., Phys. Rev. B 62 R16349-R16352 (2000).
    [6] F. L. Shyu, M. F. Lin, C. P. Chang et al., J. Phys. Soc. Jpn. 70 3348-3355. (2001)
    (the figures for armchair ribbons in this manuscript will be revised because of the
    numerical calculation errors).
    [7] K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Phys. Rev. B 59 8271-8282
    (1999).
    [8] K. Harigaya, Phys. Lett. 340 123-128 (2001).
    [9] Y. Shibayama, H. Sato, T. Enoki et al., Phys. Rev. Lett. 84 1744-1747 (2000).
    [10] K. Kusakabe, M. Maruyama. Magnetic nanographite. Phys. Rev. B 67 092406
    (2003).
    [11] C. P. Chang, C. L. Lu, F. L. Shyu, R. B. Chen, Y. C. Huang, M. F. Lin, Physica E
    27 82-97 (2005).
    [12] F. L. Shyu, M. F. Lin, J. Phys. Soc. Jpn. 69 3529-3532 (2000).
    [13] C. W. Chiu, F. L. Shyu, C. P. Chang et al., J. Phys. Soc. Jpn. 72 170-177 (2003).
    [14] L. G. Cancado, M. A. Pimenta, B. R. A. Neves et al., Phys. Rev. Lett. 93 047403
    (2004).
    [15] M. F. Lin, M. Y. Chen, F. L. Shyu. J. Phys. Soc. Jpn. 70 2513-2516 (2001).
    [16] K. Wakabayashi, M. Sigrist, Phys. Rev. Lett. 84 3390-3393 (2000).
    [17] K. Tada, K. Watanabe, Phys. Rev. Lett. 88 127601 (2002).
    [18] M. Murakami, S. Iijima, S. Yoshimura. J. Appl. Phys. 60 3856-3863 (1986).
    [19] B. L. V. Prasad, H. Sato, T. Enoki et al., Phys. Rev. B 62 11209-11218 (2000).
    [20] M. Yudasaka, Y. Tasaka, M. Tanaka et al., Appl. Phys. Lett. 64 3237-3239 (1994).
    [21] M. Zhang, D. H. Wu, C. L. Xu et al., Nanostruct Matt. 10 1145-1152 (1998).
    [22] Y. B. Li, S. S. Xie,W. Y. Zhou et al., Carbon 39 626-628 (2001).
    [23] S. Iijima, Nature 354 56-58 (1991).
    [24] X. Zhou, H. Chen, O. Y. Zhong, Mat. 13 L635-L640 (2001).
    [25] Y. H. Kim, K. J. Chang, Phys. Rev. B 64 153404 (2001).
    [26] J. O’Keeffe, C. Y. Wei, K. J. Cho, Appl. Phys. Lett. 80 676-678 (2002).
    [27] Y, Li, S. V. Rotkin, U. Ravaioli, Nano Lett. 3 183-187 (2003).
    [28] K. H. Khoo, M. S. C. Mazzoni, S. G. Louie, Phys. Rev. B 69 201401 (2004).
    [29] W. L. Guo, Y. F. Guo, Phys. Rev. Lett. 91 115501 (2003).
    [30] M, Araidai, Y, Nakamura, K. Watanabe, Phys. Rev. B 70 245410 (2004).
    [31] J. G. Johnson, G. Dresselhaus, Phys. Rev. B 7 2275-2285 (1973).
    [32] F. L. Shyu, C. P. Chang, R. B. Chen et al., Phys. Rev. B 67 045405(9) (2003).
    [33] A. Gruneis, R. Saito, G. G. Samsonidze et al., Phys. Rev. B 67 165402 (2003).
    [34] J. Jiang, R. Saito, A. Gruneis et al., Carbon 42 3169-3176 (2004).
    [35] C. P. Chang, C. W. Chiu, F. L. Shyu et al., Letters A 306 137-143 (2002).

    Chapter 3

    [1] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical properties of carbon nanotubes,
    Imperial College Press (1998).
    [2] C. G. Rocha, M. Pacheco, Z. Barticevic, and A. Latge, Phys. Rev. B 70, 233402
    (2004).
    [3] K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 54,
    17954 (1996).
    [4] F. L. Shyu, M. F. Lin, C. P. Chang, R. B. Chen, J. S. Shyu, Y. C. Wang, and C. H.
    Liao, J. Phys. Soc. Jpn. 70, 3348 ( 2001). (the figures for armchair ribbons in this
    manuscript will be revised because of the numerical calculation errors).
    [5] C. W. Chiu, F. L. Shyu, C. P. Chang, R. B. Chen, and M. F. Lin, J. Phys. Soc. Jpn.
    72,170 (2003).
    [6] J. C. Charlier, J. P. Michenaud, and X. Gonze, Phys. Rev.B 46, 4531 (1992).
    [7] J. C. Charlier, X. Gonze, and J. P. Michenaud, Phys. Rev. B 43, 4579 (1991).
    [8] J. C. Charlier, X. Gonze, and J. P. Michenaud, Carbon 32, 289 (1994).
    [9] K. Wakabayashi, M. Sigrist, and M. Fujita, Spin wave mode of edge-localized magnetic
    states in nanographite zigzag ribbons. J Phys Soc Jpn 1998; 67(6):2089-2093.
    [10] Y. Miyamoto, K. Nakada, and M. Fujita, First-principles study of edge states of
    H-terminated graphitic ribbons. Phys Rev B 1999; 59(15):9858-9861.
    [11] K. Wakabayashi, M. Fujita, H. Ajiki and M. Sigrist, Electronic and magnetic properties
    of nanographite ribbons. Phys Rev B 1999; 59(12): 8271-8282.
    [12] F. L. Shyu, and M. F. Lin, J. Phys. Soc. Jpn. 69, 3529 (2000).
    item [[13]] K. Tada, and K. Watanabe, Ab initio study of field emission from graphitic
    ribbons. Phys Rev Lett 2002; 88(12): 127601.
    [14] M. Murakami, S. Iijima, and S. Yoshimura, Morphology and structure of a onedimensional
    graphite polymer, poly-peri-naphthalene. J Appl Phys 1986; 60(11):
    3856-3863.
    [15] B. L. V. Prasad, H. Sato, T. Enoki, et al., Heat-treatment effect on the nanosized
    graphite pi-electron system during diamond to graphite conversion. Phys Rev B 2000;
    62(16): 11209-11218.
    [16] M. Yudasaka, Y. Tasaka, M. Tanaka, et al., Polyperinaphthalene film formation by
    pulsed laser deposition with a target of perylenetetracarboxylic dianhydride. Appl
    Phys Lett 1994; 64(24): 3237-3239.
    [17] M. Zhang, D. H. Wu, C. L. Xu, et al., Ribbon-like nanostructures transformed from
    carbon nanotubes at high temperature and pressure. Nanostruct Matt 1998; 10(7):
    1145-1152.
    [18] C. P. Chang, C. L. Lu, F. L. Shyu, R. B. Chen, Y. C. Huang, and M. F. Lin, Physica
    E 27 82 (2005).
    [19] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, and S. V. Dubonos,
    I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
    [20] J. S. Bunch, Y. Yaish, M. Brink, K. Bolotin, and P. L. McEuen, Nano. Lett. 5, 287
    (2005).
    [21] Y. B. Zhang, J. P. Small, W. V. Pontius, and P. Kim, Appl. Phys. Lett. 86, 073104
    (2005).
    [22] Y. H. Wu, B. J. Yang, B. Y. Zong, H. Sun, Z. X. Shen, and Y. P. Feng, J. Mat.
    Chem. 14, 469 (2004).
    [23] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V.
    Grigorieva , et al., Nature 438, 197 (2005).
    [24] Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
    [25] E. McCann, and V. I. Fal’ko, Phys. rev. Lett. 96, 086805 (2006).
    [26] V. P. Gusynin, and S. G. Sharapov, Phys. rev. Lett. 95, 146801 (2005).
    [27] J. H. Ho, C. P. Chang, and M. F. Lin, Phys. Lett. A 352, 446 (2006).
    [28] J. H. Ho, C. P. Chang, R. B. Chen, and M. F. Lin, Phys. Lett. A, 357 401(2006).
    [29] C. L. Lu, C. P. Chang, Y. C. Huang, J. M. Lu, C. C. Hwang, and M. F. Lin, J. of
    Phys.:Conden. Matt. 18 5849 (2006)
    [30] C. L. Lu, C. P. Chang, Y. C. Huang, R. B. Chen, M. F. Lin, Phys. Rev. B 73 144427
    (2006).
    [31] C. P. Chang, Y. C. Huang, C. L. Lu, J. H. Ho, T. S. Li, and M. F. Lin, Carbon 44
    508 (2006).
    [32] J. G. Johnson, and G. Dresselhaus, Phys. Rev. B 7, 2275 (1973).
    [33] F. L. Shyu, C. P. Chang, R. B. Chen, C. W. Chiu, and M. F. Lin, Phys. Rev. B 67,
    045405 (2003).
    [34] A. Gr¨uneis, R. Saito, G.. G. Samsonidze, T. Kimura, M. A. Pimenta, and A. Jorio,
    A.G. Souza Filho, G. Dresselhaus, and M.S. Dresselhaus, Phys. Rev. B 67 165402
    (2003).
    [35] J. Jiang , R. Saito, A. Gr¨uneis, G. Dresselhaus, and M. S. Dresselhaus, Carbon 42,
    3169 (2004)
    [36] M. Araidai, Y. Nakamura, K. Watanabe, Field emission mechanisms of graphitic
    nanostructures. Phys Rev B 2004; 70 (24): 245410.

    Chapter 4

    [1] R. Satio, G. Dresselhaus, and M. S. Dresselhaus, Physical properties of carbon nanotubes,
    Imperial College Press (1998).
    [2] C. G. Rocha, M. Pacheco, Z. Barticevic, and A. Latge, Phys. Rev. B 70 233402
    (2004).
    [3] K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 54
    17954 (1996).
    [4] M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. of Phys. Soc. of Jpn.
    65 1920 (1996).
    [5] C. P. Chang, Y. C. Huang, C. L. Lu, J. H. Ho, T. S. Li, and M. F. Lin, Carbon 44
    508 (2006).
    [6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I.
    V. Grigorieva, and A. A. Firsov, Science 306 666 (2004).
    [7] J. S. Bunch, Y. Yaish, M. Brink, K. Bolotin, and P. L. McEuen, Nano. Lett. 5 287
    (2005).
    [8] Y. B. Zhang, J. P. Small, M. E. S. Amori, and P. Kim, Phys. Rev. Lett. 94 176803
    (2005).
    [9] Y. H. Wu, B. J. Yang, B. Y. Zong, H. Sun, Z. X. Shen, and Y. P. Feng, J. Mat.
    Chem. 14 469 (2004).
    [10] J. C. Charlier, X. Gonze, and J. P. Michenaud, Phys. Rev. B 43 4579 (1991).
    [11] J. C. Charlier, X. Gonze, and J. P. Michenaud, Carbon 32 289 (1994).
    [12] F. L. Shyu, and M.F. Lin, J. Phys. Soc. Jpn. 69 3529 (2000).
    [13] K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Phys. Rev. B 59 8271 (1999).
    [14] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V.
    Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438 197 (2005).
    [15] Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438 201 (2005).
    [16] D. V. Khveshchenko, Phys. Rev. Lett. 87 246802 (2001).
    [17] V. P. Gusynin and S. G. Sharapov, Phys. Rev. Lett. 95 146801 (2005).
    [18] E. McCann and V. I. Fal’ko, Phys. Rev. Lett. 96 086805 (2006).
    [19] A. H. MacDonald, Phys. Rev. B 29 6563 (1984).
    [20] Y. Hatsugai, Phys. Rev. B 48 11851 (1993).
    [21] J. G. Johnson and G. Dresselhaus, Phys. Rev. B 7 2275 (1973).
    [22] M. F. Lin and KennethW.-K. Shung, Phys. Rev. B 50 17744 (1994).
    [23] K. Wakabayashi, J. Phys. Soc. Jpn. 71 2500 (2002).
    [24] N. M. R. Peres, F. Guinea and A. H. Carsro Neto, Phys. Rev. B 73 125411 (2006).
    [25] K. Wakabayashi and M. Sigrist, Phys. Rev. Lett. 84 3390 (2000).
    [26] M. Fujita, M. Igami and K. Nakada, J. Phys. Soc. Jpn. 66 1864 (1997).
    [27] H. Kajii, T. Sato and T. Yamabe, J. Phys. D: Appl. Phys. 33 3146 (2000).
    [28] V. H. Crespi, L. X. Benedict, M. L. Cohen and S. G. Louie, Phys. Rev. B 53 13303 (1996).

    Chapter 5

    [1] B. T. Kelly, Physics of graphite (Applied Science: London, Englewood, N J) (1981).
    [2] J. C. Charlier, X. Gonze, and J. P. Michenaud, Phys. Rev. B 43 4579 (1991).
    [3] J. C. Charlier, J. P. Michenaud, and X. Gonze, Phys. Rev. B 46 4531 (1992).
    [4] S. Chehab, K.Guerin, J. Amiell, and S. Flandrois, Eur. Phys. J. B 13 235 (2000).
    [5] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical properties of carbon nanotubes
    (London: Imperial College Press) (1988).
    [6] K. Nakada, M. Fujita, G. Dresselhaus, and M S. Dresselhaus, Phys. Rev. B 54 17954
    (1996).
    [7] M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. of Phys. Soc. of Jpn.
    65 1920 (1996).
    [8] K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Phys. Rev. B 59 8271 (1999).
    [9] T. L. Makarova, Semiconductor 38 615 (2004).
    [10] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I.
    V. Grigorieva, and A. A. Firsov, Science 306 666 (2004).
    [11] J. S. Bunch, Y. Yaish, M. Brink, K. Bolotin, ang P. L. McEuen, Nano. Lett. 5 287
    (2005).
    [12] Y. B. Zhang, J. P. Small, M. E. S. Amori and P. Kim, Phys. Rev. Lett. 94 176803
    (2005).
    [13] Y. H. Wu, B. J. Yang, B. Y. Zong, H. Sun, Z. X. Shen, and Y. P. Feng, J. Mat.
    Chem. 14 469 (2004).
    [14] A. K. Geim, and K. S. Novoselov, Nature Materials 6 183 (2007).
    [15] D. V. Khveshchenko, Phys. Rev. Lett. 87 246802 (2001).
    [16] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V.
    Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438 197 (2005).
    [17] Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438 201 (2005).
    [18] V. P. Gusymin, and S. G. Sharapov, Phys. Rev. Lett. 95 146801 (2005).
    [19] T. Kawai, y. Miyamoto, and Y. Koga, Phys. Rev. B 62 R16349 (2000).
    [20] Y. Miyamoto, K. Nakada, and M. Fujita, Phys. Rev. B 59 9858 (1999).
    [21] K. Kusakabe, and M. Maruyama, Phys. Rev. B 67 092406 (2003).
    [22] L. Brey, H. A. Fertig, Phys. Rev. B 73 235411 (2006).
    [23] L. Brey, H. A. Fertig, Phys. Rev. B 73 195403 (2006).
    [24] N. M. R. Peres, N. A. H. Castro, and F. Guinea, Phys. Rev. B 73 241403 (2006).
    [25] F. L. Shyu, and M. F. Lin, J. Phys. Soc. Jpn. 69 3529 (2000).
    [26] C. W. Chiu, F. L. Shyu, C. P. Chang, R. B. Chen, and M. F. Lin, J. of Phys. Soc.
    of Jpn. 72 170 (2003).
    [27] L. Yang, M. L. Cohen, and S. G. Louie, arXiv:0707.2983 2007
    [28] C. P. Chang, Y. C. Huang, C. L. Lu, J. H. Ho, T. S. Li, and M. F. Lin, Carbon 44
    508 (2006).
    [29] M. O. Goerbig, R. Moessner, and B. Doucot, Phys. Rev. B 74 161407 (2006).
    [30] J. G. Johnson, and G. Dresselhaus, Phys. Rev. B 7 2275 (1973).
    [31] M. F. Lin, and K. W. -K. Shung, Phys. Rev. B 50 17744 (1994).
    [32] Y. W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97 216803 (2006).
    [33] H. Lee, Y. W. Son, N. Park, S. W. Han, and J. J. Yu, Phys. Rev. B 72 174431
    (2005).
    [34] C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, and S. G. Louie, Phys. Rev. Lett. 92
    077402 (2004).
    [35] O. Jost, A. A. Gorbunov, W. Pompe, T. Pichler, R. Friedlein, M. Knupfer, M. Reibold,
    H. -D. Bauer, L. Dunsch, M. S. Golden, and J. Fink Appl. Phys. Lett. 75 2217
    (1999).
    [36] M. Y. Sfeir, F. Wang, L. M. Huang, C. C. Chuang, J. Hone, S. P. O’Brien, T. F.
    Heinz, and L. E. Brus, Scoence 306 1540 (2004).
    [37] M. F. Lin, Phys. Rev. B 62 13153 (2000).

    Chapter 6

    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I.
    V. Grigorieva, and A. A. Firsov, Science 306 666 (2004).
    [2] J. S. Bunch, Y. Yaish, M. Brink, K. Bolotin, and P. L. McEuen, Nano. Lett. 5 287
    (2005).
    [3] Y. B. Zhang, J. P. Small, M. E. S. Amori, and P. Kim, Phys. Rev. Lett. 94 176803
    (2005).
    [4] Y. H. Wu, B. J. Yang, B. Y. Zong, H. Sun, Z. X. Shen, and Y. P. Feng, J. Mat.
    Chem. 14 469 (2004).
    [5] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V.
    Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438 197 (2005).
    [6] Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438 201 (2005).
    [7] D. V. Khveshchenko, Phys. Rev. Lett. 87 246802 (2001).
    [8] V. P. Gusynin and S. G. Sharapov, Phys. Rev. Lett. 95 146801 (2005).
    [9] E. McCann and V. I. Fal’ko, Phys. Rev. Lett. 96 086805 (2006).
    [10] A. K. Geim and K. S. Novoselov, Nature Materials 6 183 (2007).
    [11] C. L. Lu, C. P. Chang, Y. C. Huang, J. H. Ho, C. C. Hwang and M. F. Lin, J. Phys.
    Soc. Jpn. 76 024701 (2007).
    [12] C. L. Lu, C. P. Chang, Y. C. Huang, R. B. Chen, and M. F. Lin, Phys. Rev. B 73
    144427 (2006).
    [13] C. L. Lu, C. P. Chang, Y. C. Huang, J. M. Lu, C. C. Hwang, and M. F. Lin, J. Phys.:
    Condens. Matter 18 5849 (2006).
    [14] J. C. Charlier, X. Gonze, and J. P. Michenaud, Phys. Rev. B 43 4579 (1991).
    [15] A. H. MacDonald, Phys. Rev. B 29 6563 (1984).
    [16] Y. Hatsugai, Phys. Rev. B 48 11851 (1993).
    [17] C. P. Chang, Y. C. Huang, C. L. Lu, J. H. Ho, T. S. Li, , and M. F. Lin, Carbon 44
    508 (2006).
    [18] J. G. Johnson and G. Dresselhaus, Phys. Rev. B 7 2275 (1973).
    [19] M. F. Lin and K. W. -K. Shung, Phys. Rev. B 50 17744 (1994).

    Chapter 7

    [1] S. Iijima, Nature 354 56 (1991).
    [2] M. Murakami, S. Iijima and S. Yoshimura, J. Appl. Phys. 60 3856 (1986).
    [3] M. Yudasaka et al., Appl. Phys. Lett. 64 3237 (1994).
    [4] K. Wakabayashi, M. Fujita, H. Ajiki, M. Sigrist, Phys. Rev. B 59 8271 (1999).
    [5] B. L. V. Prasad et al., Phys. Rev. B 64 235407 (2001).
    [6] M.F. Lin, F.L. Shyu, J. Phys. Soc. Jpn. 69 3529 (2000).
    [7] M.F. Lin, M.Y. Chen, F.L. Shyu, J. Phys. Soc. Jpn. 70 2513 (2001).
    [8] C. P. Chang et al., Carbon 44 508 (2006).
    [9] J. C. Charlier, X. Gonze and J. P. Michenaud, Phys. Rev. B 43 4579 (1991).
    [10] Y. Miyamoto, K. Nakada, and M.Fujita, Phys. Rev. B 59 9858 (1999).
    [11] H. Lee, Y.-W. Son et al., Phys. Rev. B 72 174431 (2005).
    [12] Y.-W. Son et al., Phys. Rev. Lett. 97 216803 (2006).

    下載圖示 校內:2008-10-31公開
    校外:2008-10-31公開
    QR CODE