| 研究生: |
黃瑜君 Huang, Yu-Jiun |
|---|---|
| 論文名稱: |
以次磷酸鈉製備用於直接甲醇燃料電池之PtRu/C觸媒 PtRu/C Catalyst Prepared by Sodium Hypophosphite for Direct Methanol Fuel Cell |
| 指導教授: |
楊明長
Yang, Ming-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 直接甲醇燃料電池 、次磷酸鈉 、實驗設計法 、回應曲面法 |
| 外文關鍵詞: | direct methanol fuel cell, sodium hypophosphite, experimental design, response surface methodology |
| 相關次數: | 點閱:93 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究研製直接甲醇燃料電池用的鉑系合金觸媒分為兩大主題,主題一為比較不同還原劑(硼氫化鈉及次磷酸鈉)所製備觸媒與E-TEK商用觸媒的電化學活性;主題二為以次磷酸鈉作還原劑,利用實驗設計法找出最佳陰陽極觸媒的組合。
由TEM及XRD發現硼氫化鈉所還原的觸媒平均粒徑為3.5~4.5 nm,且粒徑分布不均,電化學活性最差;以次磷酸鈉作為還原劑,不僅能將觸媒平均粒徑有效降低至2.58 nm,並能製造分散性佳之鉑釕合金。利用循環伏安法與線性掃描法比較自製觸媒與商用觸媒E-TEK之電化學活性,發現以次磷酸鈉製備之觸媒CP6([次磷酸鈉]/[白金鹽]莫爾比=6)甲醇氧化之起始電位0.243 V(V vs. Ag/AgCl)略低於E-TEK起始電位0.245 V(V vs. Ag/AgCl);CP6峰電流密度為0.049 mA/cm2,高於商用觸媒E-TEK之峰電流密度0.039 mA/cm2約26%; CP6峰電流密度比2.33高於E-TEK峰電流密度1.92約21%。
另外,以次磷酸鈉為還原劑,藉由實驗統計法的回應曲面圖可發現,較佳MEA陰陽極觸媒條件為陽極具有高白金擔載量(20 wt.%)且鉑釕原子比等於1,且陰極之鉑釕原子比等於1,但白金擔載量非必要條件。但當陰極白金擔載量低於2.5 wt.%時,速率決定步驟轉變為陰極,且引發整體電池放電功率下降,顯示陰極白金擔載量仍有極限值存在。
This report investigated platinum alloy as the catalyst for direct methanol fuel cell. This study was divided into two parts. The first part was to compare the electrochemical activity among commercial catalyst E-TEK and self-made catalysts reduced by three different reducing agents, NaBH4, CH3OH and NaH2PO2. The second part was to find an optimum combination of PtRu/C catalyst for MEA by Experimental Design method.
According to TEM and XRD analysis, the average grain size of the catalysts reduced by NaBH4 was about 3.5 ~ 4.5 nm and the particle size distribution was broader. These two factors gave lower electrochemical activity than that prepared by NaH2PO2. The reducing agent NaH2PO2 not only effectively reduced the average grain size of the catalysts to 2.5 nm but accomplished better particle size dispersion. The electrochemical activity of self-made catalysts and commercial catalyst E-TEK was evaluated by cyclic voltammetry and linear sweep voltammetry. It was found that the onset potential of methanol oxidation of catalyst CP6 ( [NaH2PO2]/[H2PtCl6]=6 ) reduced by NaH2PO2 is 0.243 V (V vs. Ag/AgCl) which was lower than that of commercial catalyst E-TEK 0.245 V (V vs. Ag/AgCl); the peak current density of CP6 is 0.049 mA/cm2 which was higher than that of E-TEK 0.039 mA/cm2 about 26 %; the peak current density ratio of CP6 is 2.33 which is higher than that of E-TEK 1.92 about 21%.
With the response surface methodology of experimental design, it was found that the best conditions of the MEA happened when the platinum loading was high and the Pt/Ru atomic ratio was 1 on the anode electrode; and the Pt/Ru atomic ratio was 1 and the platinum loading was not the key factor for the cathode electrode. However, when the platinum loading of the cathode electrode was lower than 2.5 wt. %, the power density of the single cell became worse probably because of the rate determining step switching to the cathode electrode. Apparently, there was an ultimate value of platinum loading on the cathode electrode.
1. 林成原、陳永和,“車用替代性燃料發展現況與展望”,能源季刊,民91年。
2. J. Larminie, A. Disk, “Fuel Cell system Explained”, John Wiley & Son, p.1 (2001).
3. 許寧逸、顏溪成,“由碳能朝向氫能的燃料電池”,科學發展2003年7月,367期。
4. F. Barbir, “PEM Fuel Cells: theory and practice”, Elsevier Academic Press, p. 9 (2005).
5. Rishabh Jain, Biswajit Mandal,“Studies on Ideal and Actual Efficiency of Solar Polymer Electrolyte Fuel Cell”, Alternative Energy eMagazine.
6. 楊志忠、林頌恩、韋文誠,“燃料電池的發展現況”,科學發展2003年7月,367期。
7. Arico, A. S., Srinivasan, S., and Antonucci, V., Fuel Cells, Vol. 1, p. 133 (2001).
8. 許寧逸、顏溪成,由碳能朝向氫能的燃料電池,科學發展2003年7月,367期
9. V.S. Silva, A. Mendesa, L.M. Madeira, S.P. Nunes, “Proton exchange membranes for direct methanol fuel cells: Properties critical study concerning methanol crossover and proton conductivity”, Journal of Membrane Science, Vol. 276, pp. 126–134 (2006).
10. 林彥君,“奈米複合觸媒於質子交換型燃料電池之應用”,國立 中央大學化學研究所碩士論文(2006)。
11. S. B. Beale, “ Calculation procedure for mass transfer in fuel cells ”, Journal of Power Sources, Vol. 128, pp. 185-192 (2004).
12. A. Oedegaard, C. Hebling, A. Schmitz, S. Møller-Holst, R. Tunold, “ Influence of diffusion layer properties on low temperature DMFC ”, Journal of Power Sources , Vol. 127, pp. 187-196 (2004).
13. Kyung-Won Park, Bu-Kil Kwon, Jong-Ho Choi, In-Su Park, Young-Min Kim, Yung-Eun Sung, “ New RuO2 and carbon–RuO2 composite diffusion layer for use in direct methanol fuel cells ”, Journal of Power Sources , Vol. 109, pp. 439-445 (2002).
14. T. Bewer, T. Beckmann, H. Dohle, J. Mergel, D. Stolten, “ Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution ”, Journal of Power Sources, Vol. 125, pp. 1-9 (2004).
15. M. P. Hogarth et al. Platinum Metals Review 2002, 46 (4), 146.
16. 黃鎮江,“燃料電池”,全華科技圖書股份有限公司,台北市,8-5頁 (2004)。
17. T. Frelink, W. Visscher, J.A.R. van Veen, “ On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt ”, Surface Science, Vol. 335, pp. 353-360 (1995).
18. Yan Xia Chen, Atsushi Miki, Shen Ye, Hidetada Sakai, Masatoshi Osawa, “ Formate, an Active Intermediate for Direct Oxidation of Methanol on Pt Electrode ”, J. Am. Chem. Soc., Vol. 125, pp. 3680-3681 (2003).
19. R. Greef, R. M. Peat, L. M. Peter, D. Pletcher, J. Robinson, “ In Instrumental methods in Electrochemistry”, John Wiley & Sons, Inc.: New York , 1985.
20. http://tinyurl.com/y9hn8xw
21. S. Wasmus, A. Ku¨ver, “ Methanol oxidation and direct methanol fuel cells: a selective review ”, Journal of Electroanalytical Chemistry, Vol. 461, pp. 14-31 (1999).
22. T. Frelink, W. Visscher, J.A.R. van Veen, “On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt”, Surface Science, Vol. 335, pp. 353-360 (1995).
23. Y. Takasu, T. Fujiwara, Y. Murakami, K. Sasaki, M. Oguri, T. Asaki, W. Sugimotoa, “Effect of Structure of Carbon-Supported PtRu Electrocatalysts on the Electrochemical Oxidation of Methanol”, Journal of The Electrochemical Society, Vol. 147, pp. 4421-4427 (2000).
24. A. Pozio, R. F. Silva, M. De Francesco, F. Cardellini and L. Giorgi, “A novel route to prepare stable Pt–Ru/C electrocatalysts for polymer electrolyte fuel cell”, Electrochimica Acta, Vol. 48, pp. 255-262 (2002).
25. Masahiro Watanabe, Makoto Uchida, Satoshi Motoo, “Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol”, Journal of Electroanalytical Chemistry, Vol. 229, pp. 395-406 (1987).
26. A. Hamnett, B. J. Kennedy, F. E. Wagner, “Pt-Ru anodes for methanol electrooxidation: A ruthenium-99 Mössbauer study”, Journal of Catalysis, Vol. 124, pp. 30-40 (1990).
27. Yicheng Liu, Xinping Qiu, Zhenguo Chen, Wentao Zhu, “A new supported catalyst for methanol oxidation prepared by a reverse micelles method”, Electrochemistry Communications, Vol. 4 , pp. 550-553 (2002).
28. Bonet F., Delmas V., Grugeon S., Herrera Urbina R., Silvert P.-Y., Tekaia-Elhsissen K., “Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol”, Nanostructured Materials, Vol. 11, pp. 1277-1284 (1999).
29. Brendan J. Kennedy, Alison W. Smith, “Reactivity of RuO2 as a promoter for methanol oxidation”, Journal of Electroanalytical Chemistry, Vol. 293, pp. 101-110 (1990).
30. T. Frelink, W. Visscher, J.A.R. van Veen, “On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt”, Surface Science, Vol. 335, pp. 353-360 (1995).
31. Masahiro Watanabe, Makoto Uchida, Satoshi Motoo, “Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol”, Journal of Electroanalytical Chemistry, Vol. 229, pp. 395-406 (1987).
32. A. S. Aricò, P. L. Antonucci, E. Modica, V. Baglio, H. Kim, V. Antonucci, “Effect of Pt-Ru alloy composition on high-temperature methanol electro-oxidation”, Electrochimica Acta, Vol. 47, pp. 3723-3732 (2002).
33. Yu Morimoto, Ernest. B. Yeager, “CO oxidation on smooth and high area Pt, Pt-Ru and Pt-Sn electrodes”, Journal of Electroanalytical Chemistry, Vol. 441, pp. 77-81 (1998).
34. A. Pozio, L. Giorgi, E. Antolini, E. Passalacqua, “Electroxidation of H2 on Pt/C Pt–Ru/C and Pt–Mo/C anodes for polymer electrolyte fuel cell”, Electrochimica Acta, Vol. 46, pp. 555-561 (2000).
35. Jong-Ho Choi, Kyung-Won Park, In-Su Park, Woo-Hyun Nam, Yung-Eun Sung, “Methanol electro-oxidation and direct methanol fuel cell using Pt/Rh and Pt/Ru/Rh alloy catalysts”, Electrochimica Acta, Vol. 50, pp. 787-790 (2004).
36. Dae Kyu Kang, Chang Soo Noh, Nak Hyeon Kim, Sang-Ho Cho, Jung Min Sohn, Tae Jin Kim, Young-Kwon Park, “Effect of transition metals (Ni, Sn and Mo) in Pt5Ru4M alloy ternary electrocatalyst on methanol electro-oxidation”, Journal of Industrial and Engineering Chemistry, Vol. 16, pp. 385-389 (2010).
37. M. Götz, H. Wendt, “Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas”, Electrochimica Acta, Vol. 43, pp. 3637-3644 (1998).
38. A. S. Aricò, P. Cretì, E. Modica, G. Monforte, V. Baglio, V. Antonucci, “Investigation of direct methanol fuel cells based on unsupported Pt–Ru anode catalysts with different chemical properties”, Electrochimica Acta, Vol. 45, pp. 4319-4328 (2000).
39. M. Baldauf , W. Preidel, “Status of the development of a direct methanol fuel cell”, Journal of Power Sources , Vol. 84, pp. 161-166 (1999).
40. Susanthri C. Perera, Petru S. Fodor, Georgy M. Tsoi, Lowell E. Wenger, and Stephanie L. Brock,“Application of De-silylation Strategies to the Preparation of Transition Metal Pnictide Nanocrystals: The Case of FeP”, Chem. Mater., Vol. 15, pp. 4034-4038 (2003).
41. Xinzhong Xuea, Junjie Gea, Tian Tiana, Changpeng Liua, Wei Xinga, and Tianhong Lua, “Enhancement of the electrooxidation of ethanol on Pt–Sn–P/C catalysts prepared by chemical deposition process”, Journal of Power Sources, Vol. 172, pp. 560-569 (2007).
42. Lingling Zhang, Yawen Tang, Jianchun Bao, Tianhong Lu, Cun Li, “A carbon-supported Pd-P catalyst as the anodic catalyst in a direct formic acid fuel cell”, Journal of Power Sources, Vol. 162, pp. 177-179 (2006).
43. Hideo Daimon, Yukiko Kurobe, “Size reduction of PtRu catalyst particle deposited on carbon support by addition of non-metallic elements”, Catalysis Today, Vol. 111, pp. 182-187 (2006).
44. A.M. Fundo, L.M. Abrantes, “The electrocatalytic behaviour of electroless Ni–P alloys”, Journal of Electroanalytical Chemistry, Vol. 600, pp. 63-79 (2007)
45. Xinzhong Xue, Junjie Ge, Changpeng Liu, Wei Xing, Tianhong Lu, “Novel chemical synthesis of Pt–Ru–P electrocatalysts by hypophosphite deposition for enhanced methanol oxidation and CO tolerance in direct methanol fuel cell ”, Electrochemistry Communications, Vol. 8, pp. 1280-1286 (2006).
46. M.-S. Lo¨ffler, H. Natter, R. Hempelmann, K. Wippermann, “Preparation and characterisation of Pt/Ru model electrodes for the direct methanol fuel cell”, Electrochimica Acta , Vol. 48, pp. 3047-3051 (2003).
47. 陳美合,“海膽狀碳材用於直接甲醇燃料電池之放電性能探討 ”,國立成功大學化工研究所碩士論文(2009)。
48. 陳漢根,“合成高性能直接甲醇燃料電池陽極觸媒關鍵之探討”,p.109,國立中央大學化學研究所碩士論文(2007)。