| 研究生: |
陳銘儀 Chen, Ming-Yi |
|---|---|
| 論文名稱: |
可連接式的紙基流體元件與運用 Multi-connected Paper-based Fluidic Device and Its Applications |
| 指導教授: |
楊瑞珍
Yang, Ruey-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 可連接的紙基晶片 、比色法 、點照護 、亞硝酸 、草酸 |
| 外文關鍵詞: | Multi-connected, Paper-based Fluidic Devices, Colorimetry, Point of Care, Nitrite, Oxalate |
| 相關次數: | 點閱:240 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是整合不同測試的連接元件,將其設計在傳統的紙基流體平台。利用簡單的幾何形狀與紙張本身的剛性去做接合後,再利用磁鐵與磁性的對準環去達到固定元件之功能。最後將樣品液滴入對準環中心並偵測每一個測試區的顏色變化。
為了測試可連接式元件的功能性,我們用草酸與亞硝酸混合溶液做測試,並在一個紙基檢測平台上同時完成兩項檢驗。依照傳統比色法,利用照相設備擷取影像並將顏色的平均強度數位化,再根據統計數據產生校正曲線。
利用所設計的紙基平台檢測草酸與亞硝酸濃度, 實驗結果顯示,草酸在0~1.0 g/ 100ml濃度範圍內,顏色的變化呈線性的分佈(R2=0.989);亞硝酸在0~11.5 ppm濃度範圍內呈現出線性的分佈(R2=0.991)。另外並利用新的設計連接亞硝酸與草酸試紙,量測草酸與亞硝酸之混合溶液,發現所得到的校準曲線與純草酸溶液和亞硝酸溶液的校正曲線差異不大,故此研究所得的校正曲線是可信的。
為了證實紙基流體平台的可行性,我們分析魚缸中的環境,並量測亞硝酸的濃度,利用先前的校正曲線可以得到魚缸中亞硝酸的濃度並與第三方檢測機構的檢測結果做比較。其誤差值與紙基所量測到的濃度約有8%。
可多重連接的設計可以針對特定需要的檢測項目去做連接。在本研究中可以在連接的紙基元件上同時完成所有的檢測並減少取樣的體積。此紙基平台讓使用者可以藉由滴入樣品如: 唾液,全血和尿液 快速檢驗。此外,多重連接的紙基平台可以更簡單的應用於個人照護,並可在未來應用於醫學上的診斷。
In this research, we demonstrate the paper-based connector that can integrate the different tests in traditional paper-based fluidic devices, namely multi-connected paper-based fluidic devices. We utilized simple geometric shape and the rigidity of the paper to connect test strips, and the device was fixed using the magnet and magnetic concentric rings. Finally, we dripped the samples into the central of concentric ring and then detected the changing of color at each test strip.
In order to verify the function of multi-connected paper-based fluidic device, we used the mixed solution that containing oxalate and nitrite to test the accuracy of proposed device. According to conventional colorimetry, we utilized photographic equipment to capture images and then digitized the mean intensity of color. Moreover, we take statistical data to produce calibration curves.
The developed paper-based device can detect the concentration of oxalate and nitrite at the same time. The results presented the linear relationship against the concentration of oxalate in the range of 0-1.0 g / 100 ml (R2=0.989). The linear relationship against the concentration of nitrite in the range of 0-11.5 ppm (R2=0.991). We also connected oxalate and nitrite testing strips to detect mixing solution that containing oxalate and nitrite. We find there are no difference at the calibration curves for concentration of mixing solution, pure oxalate solution and pure nitrite solution. Experimental data shows the calibration curves are almost convinced.
For demonstrating the paper-based device, we analyzed the environment of fish tank, and detected the concentration of nitrite. We applied the calibration curve to get the concentrations of samples, and compared with the results of independent test organization. The error was shown 8% that compared with both our group and independent test organization.
The design of multi-connected functions can focus on specific detection items and to connect more test strips that we wanted to detect. We could complete all detection in a multi-connected paper-based device at the same time, and reduce the volume of sample. The paper-based device enables a user to perform testing quickly by dripping the testing sample such as sputum, whole blood and urine. Furthermore, the proposed multi-connected paper-based fluidic devices could be easily applied to the point-of-care. The developed paper-based device is promising for diagnosis in the future.
References
1. E. A. S.C. Terry, A Gas Chromatographic Air Analyzer Fabricated on a Silicon Wafer, IEEE Transactions on Electron Devices, 26, 1880-1886, 1979.
2. N. G. A. Manz, H.M. Widmer, A Novel Concept for Chemical Sensing, Sensors and Actuators, 1, 244–248, 1990.
3. P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam and B. H. Weigl, Microfluidic Diagnostic Technologies for Global Public Health, Nature, 442, 412-418, 2006.
4. W. G. Lee, Y. G. Kim, B. G. Chung, U. Demirci and A. Khademhosseini, Nano/Microfluidics for Diagnosis of Infectious Diseases in Developing Countries, Advanced Drug Delivery Reviews, 62, 449-457, 2010.
5. E. Carrilho, A. W. Martinez and G. M. Whitesides, Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics, Analytical chemistry, 81, 7091-7095, 2009.
6. S. T. P. Andres W. Martinez, Benjamin J. Wiley, Malancha Gupta and George M. Whitesides, FLASH A Rapid Method for Prototyping Paper-Based Microfluidic Devices, Lab on a Chip, 2146–2150, 2008.
7. E. M. Fenton, M. R. Mascarenas, G. P. Lopez and S. S. Sibbett, Multiplex Lateral-Flow Test Strips Fabricated by Two-Dimensional Shaping, ACS Applied Materials & Interfaces, 1, 124-129, 2009.
8. Emanuel Carrilho, Scott T. Phillips, Sarah J. Vella, Andres W. Martinez, and George M. Whitesides, Paper Microzone Plates, Analytical Chemistry, 81, 5990-5998, 2009.
9. C. M. Cheng, A. W. Martinez, J. Gong, C. R. Mace, S. T. Phillips, E. Carrilho, K. A. Mirica and G. M. Whitesides, Paper-Based ELISA, Angewandte Chemie, 49, 4771-4774, 2010.
10. O. C. Wijitar Dungchai, and Charles S. Henry, Electrochemical Detection for Paper-Based, Anal. Chem., 81, 5821–5826, 2009.
11. S. N. Tan, L. Ge, H. Y. Tan, W. K. Loke, J. Gao and W. Wang, Paper-Based Enzyme Immobilization for Flow Injection Electrochemical Biosensor Integrated with Reagent-Loaded Cartridge Toward Portable Modular Device, Analytical Chemistry, 84, 10071-10076, 2012.
12. L. Ge, J. Yan, X. Song, M. Yan, S. Ge and J. Yu, Biomaterials, Three-Dimensional Paper-Based Electrochemiluminescence Immunodevice for Multiplexed Measurement of Biomarkers and Point-Of-Care Testing, 33, 1024-1031, 2012.
13. C. Hu, X. Bai, Y. Wang, W. Jin, X. Zhang and S. Hu, Inkjet Printing of Nanoporous Gold Electrode Arrays on Cellulose Membranes for High-Sensitive Paper-Like Electrochemical Oxygen Sensors Using Ionic Liquid Electrolytes, Analytical Chemistry, 84, 3745-3750, 2012.
14. M. Zhang, L. Ge, S. Ge, M. Yan, J. Yu, J. Huang and S. Liu, Three-Dimensional Paper-Based Electrochemiluminescence Device for Simultaneous Detection of Pb2+ and Hg2+ Based on Potential-Control Technique, Biosensors & Bioelectronics, 41, 544-550, 2013.
15. S. T. P. Audrey K. Ellerbee, Adam C. Siegel, Katherine A. Mirica, and P. S. Andres W. Martinez, Nina Jain,Mara Prentiss, and George M. Whitesides, Quantifying Colorimetric Assays in Paper-Based, Anal. Chem., 81, 8447–8452, 2009.
16. J. L. Delaney, C. F. Hogan, J. Tian and W. Shen, Electrogenerated Chemiluminescence Detection in Paper-Based Microfluidic Sensors, Analytical Chemistry, 83, 1300-1306, 2011.
17. S. T. P. Andres W. Martinez, Emanuel Carrilho, Samuel W. Thomas ,Hayat Sindi, and George M. Whitesides, Camera Phones and Paper-Based Microfluidic, Anal. Chem., 80, 3699–3707, 2008.
18. A. W. Martinez, S. T. Phillips and G. M. Whitesides, Three-Dimensional Microfluidic Devices Fabricated in Layered Paper and Tape, Proceedings of the National Academy of Sciences of the United States of America, 105, 19606-19611, 2008.
19. S. A. Klasner, A. K. Price, K. W. Hoeman, R. S. Wilson, K. J. Bell and C. T. Culbertson, Paper-Based Microfluidic Devices for Analysis of Clinically Relevant Analytes Present in Urine and Saliva, Analytical and Bioanalytical Chemistry, 397, 1821-1829, 2010.
20. D. A. Susan King Strasinger, M.T.(A.S.C.P),Marjorie Schaub Di Lorenzo,M.T.(A.S.C.P)SH, Urinalysis and Body Fluids, 2004.
21. M. Reches, K. A. Mirica, R. Dasgupta, M. D. Dickey, M. J. Butte and G. M. Whitesides, Thread As a Matrix for Biomedical Assays, ACS Applied Materials & Interfaces, 2, 1722-1728, 2010.
22. C. A. G. Paula Jakszyn, Nitrosamine and Related Food Intake and Gastric and Oesophageal Cancer Risk: A Systematic Review of the Epidemiological Evidence, World Journal of Gastroenterology, 12, 4296-4303, 2006.
23. 陳怡芳, 國立成功大學醫學工程所,碩士論文,2006.
24. M. J. E. D. Calvin M. Kunin, RN, Self-Screening for Siginificant Bacteriuria, JAMA, 231, 1349-1353, 1975.
25. J. C. Jokerst, J. A. Adkins, B. Bisha, M. M. Mentele, L. D. Goodridge and C. S. Henry, Development of A Paper-Based Analytical Device for Colorimetric Detection of Select Foodborne Pathogens, Analytical Chemistry, 84, 2900-2907, 2012.
26. B. M. Jayawardane, I. D. McKelvie and S. D. Kolev, A Paper-Based Device for Measurement of Reactive Phosphate in Water, Talanta, 100, 454-460, 2012.
27. Y. Sameenoi, P. Panymeesamer, N. Supalakorn, K. Koehler, O. Chailapakul, C. S. Henry and J. Volckens, Microfluidic Paper-Based Analytical Device for Aerosol Oxidative Activity, Environmental Science & Technology, 47, 932-940, 2013.
28. R. S. Alkasir, M. Ornatska and S. Andreescu, Colorimetric Paper Bioassay for The Detection of Phenolic Compounds, Analytical Chemistry, 84, 9729-9737, 2012.
29. A. E. a. E. W. Fredric L. Coe, Kidney Stone Disease, Sience in Medicine, 2005, 115, 2598-2608.
30. SN Noonan Bsc, MSc and GP Savage BSc(Hons), PhD, NZ Reg Nutr, Oxalate Content of Foods and Its Effect on Humans, Asia Pacific J Clin Nutr, 8, 64-74, 1999.
31. R. Z. H. Makoto Morozumi, Ken-ichi Yamakawa, Sanehiro Hokama, Saori Nishijima,Yoshinori Oshiro, Atsushi Uchida, Kimio Sugaya, Yoshihide Ogawa, Gastrointestinal Oxalic Acid Absorption in Calcium-Treated Rats, Urological Research, 3, 168-172, 2006.
32. Y. O. Rayhan Zubair Hossain, Makoto Morozumi, Sanehiro Hokama, and Kimio Sugaya, Milk and Calcium Prevent Gastorintestinal Absorption and Urinary Excretion of Oxalate in Rats, Frontiers in Bioscience, 8, 117-125, 2003.
33. X. Yang, O. Forouzan, T. P. Brown and S. S. Shevkoplyas, Integrated Separation of Blood Plasma from Whole Blood for Microfluidic Paper-Based Analytical Devices, Lab on a Chip, 12, 274-280, 2012.
34. T. Songjaroen, W. Dungchai, O. Chailapakul, C. S. Henry and W. Laiwattanapaisal, Blood Separation on Microfluidic Paper-Based Analytical Devices, Lab on a Chip, 12, 3392-3398, 2012.
35. E. W. Washburn, The Dynamics of Capillary Flow, Physical Review, 17, 273-283, 1921.
36. E. Fu, S. A. Ramsey, P. Kauffman, B. Lutz and P. Yager, Transport in Two-Dimensional Paper Networks, Microfluidics and Nanofluidics, 10, 29-35, 2011.
37. R. Wizinger-Aust, Peter Griess and Seine Zeit, Angewandte Chemie, 70 (8), 199–204, 1958.