| 研究生: |
賴信穎 Lai, Shin-Ying |
|---|---|
| 論文名稱: |
二氧化鈦添加氫氧基磷灰石對水中污染物光分解之效應 Effect of Adding Apatite onto Titania on Photodegradation of Pollutants in Water |
| 指導教授: |
翁鴻山
Weng, Hung-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 甲基藍 、光觸媒 、光降解 、磷灰石 |
| 外文關鍵詞: | photocatalyst, photodegradation, methylene blue, apatite |
| 相關次數: | 點閱:71 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研發高效率光催化分解一直是光觸媒領域裡的重點。本論文研究在二氧化鈦表面上添加吸附劑藉以提高處理水中污染物質之效能。研究中分別以溼式化學沉澱法及溶膠凝膠法製備磷灰石(Apatite)與二氧化鈦二種複合式光觸媒,並探討各種變因對以這類光觸媒降解幾種污染物之影響。實驗中所降解之污染物有甲基藍、甲胺及丁酮,其中以甲基藍做為模式反應物探討其反應動力式。並由BET分析得知光觸媒粉體之孔徑分佈對光催化反應的影響。
在光分解甲基藍及甲胺的實驗中,我們發現固定TiO2(商用觸媒Anatase)之重量並改變Apatite的沉積量所製成Apatite/TiO2光觸媒中,在適當的條件下,有一最佳的重量比可獲得最好的光催化效率。在Degussa P-25 TiO2光觸媒上添加吸附劑反而會降低其對甲基藍之光降解效能。由甲基藍的實驗中,我們可以發現若將初始吸附之因素移除時,甲基藍之降解速率大致上符合擬一階反應動力式之假設。
In the field of photocatalysis it is an important object to search for high efficient catalyst for photodegradation. Therefore in this study, we investigated the effect of adding adsorbent onto titania surface on photo-degradation of pollutants in water. We used the wet chemical precipitate method to deposit apatite onto the commercial TiO2 to form apatite/TiO2, and the sol-gel method to prepare titania, and investigated the effects of various factors on the photocatalytic reaction. We chose methylene blue, methyl amine and methyl-ethyl ketone as the pollutants to be degradated. Methylene blus was used as a model reactant and its reaction kinetics was also investigated.
We found that when we used the Apatite/TiO2 catalysts having the same amount of TiO2(Merck) but different apatite loadings, there has an optimal weight ratio for gaining the best photocatalyzing efficiency under appropriate condition. We also found that the deposition of apatite on Degussa P-25 TiO2 photocatalyst would result in a reduction in its photoactivity. In the degradation experiment of methylene blue , we could find that if adsorption at initial stage is neglected, the degradation rate of methylene blue will roughly follow pseudo first order kinetics.
[1] S. J. Gregg and K. S. W. Sing, Adsorption, Surface area and Porosity.
Academic Press. New York,1967。
[2] P. W. Atkins, Physical Chemistry , Oxford University,p997,1994.
[3]卓靜哲,何瑞文,黃守仁,施良垣,蘇世剛,物理化學, 第507-508頁,三民書局,台南市, ,1994年。
[4] A. Fujishima and K. Honda, Nature37(1972),238
[5] A. L. Linsebigler, G. Lu, and J. T. Yates, Jr., Chem. Rev. 95(1995),735。
[6] Y. Masuda, K. Matubara, and S. Sakka, “ Synthesis of Hydroxyapatite form Metal Alkoxides through Sol-Gel Technique”,J. of the Ceramic Society of Japan, Int, Edition. 98(1990), 1266。
[7] X. Tang and Z. Wang,J. material chemistry 8(1998),2233。
[8] K.C.B.Yeong,J. Wang, and S.C.NG, “Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO4”,Biomaterials 22(2001)2705
[9] P. Shuk, W. L. Suchanek, T. Hao, E. Gulliver R. E. Riman, M. Senna,
K. S. TeHuisen, and V. F. Janas, “Mechanochemical -hydrothermal
preparation of crystalline hydroxyapatite powders at room
temperature”, Journal of materials research“Vol. 16(2001),No. 5, May
,1231。
[10] E. Bouyer, F. Gitzhofer, and M. I. Boulos, “Morpological study of hydroxyapatite nanocrystal suspension”Journal of materials science: Materials in medicine 11(2000) ,523。
[11] S. N. Frank, and A. J. Bard, J. Phys.Chem.81(1997),1484。
[12] T. Sakata,and T. Kawai, Academic press, New York,1983。
[13] K. Rajehwar, and N.R. de Tacconi, Chem.Mater,13(2001),2765。
[14] V. Subramanaian and P. V. Kamat., J. Phys. Chem. B 107(2003), 7479。
[15] Q. Zhang, L. Gao., Applied Catalysis B,26(2000),207。
[16] W. Adrian, Electrochemistry of Semiconductors.1998
[17]陳妙琪,複合鍍金TiO2Ni光觸媒之製造與特性分析,國立交通大學,材料所,碩士論文,2002。
[18]張立德,牟季美,奈米材料和奈米結構,滄海書局,台北市,民國91年。
[19] M. Anpo, T. Shima., J. Phys. Chem. 91(1987), 4305。
[20] H. Cheng, J. Ma, Z. Zhao, L. Qi., Chem. Mater. 7(1995),663。
[21] Y. F. Zhu, L. Zhang, C. Gao, L. L. Cao, J. Mater. Sci. 35(2000),4049。
[22] H. D. Nam, B. H. Lee, S. J. Kim,C. H. Jung, J. H. Lee, S. Park, Jpn J. Appl. Phys. 37(1998),4603。
[23] S. J. Kim, S. D. Park, Y. H. Jeong, J. Am. Ceram. Soc., 82(1999),927 。
[24] S. J. Kim, S. D. Park, Y. H. Jeong, I. H. Kuk, United States Patent:6001326,1999。
[25] C. C. Wang, Y. J. Ying, Chemistry of Materials, 11(1999),3113。
[26]馬振基,奈米材料科技原理與應用,全華科技圖書公司,台北市,2003。
[27] http://www.photocatalyst.co.jp。
[28] S. Brunaller, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60(1938), 390。
[29] G. Ertl, H. Knőzinger, J. Weitkamp, “Handbook of Heterogeneous Catalysis”, Vol.3,VCH D-69451 Weinheim, 1508, 1997。
[30] E. P. Barrett, L.G. Joyner, and P. P. Halenda, J. Am., Chem. Soc. 73(1951),373。
[31]陳慧英,“溶膠凝膠法在薄膜製備上之應用”,化工技術,無機薄膜之製備與應用專輯,11,80,1999。
[32] J. Livage , C. Sanchez, J. Non-Cryst. Solids, 145(1992), 11。
[33] C. J. Brinker, G. W. Scherer, Sol-Gel Sci., Academic Press, New York, 839,1990。
[34]廖麗芬,甲胺在TiO2粉末上的吸附與化學反應研究,國立成功大學,化學所,碩士論文,2001。
[35] Y. Yang, Q. Wu, Y. Guo, C. Hu, E. Wang, J. Molecular Catalysis. B, 225(2005), 203。
[36]方俊民,當代有機合成,藝軒圖書公司,台北,1986。
[37]鄭智鴻,量身訂做的二氧化鈦光觸媒之合成,國立成功大學,化工所,碩士論文,2006。