| 研究生: |
林煜軒 Lin, Yu-Xuan |
|---|---|
| 論文名稱: |
導眠靜對MA-10小鼠萊氏腫瘤細胞之細胞凋亡機制的探討 The Apoptotic Mechanism of Midazolam on MA-10 Mouse Leydig Tumor Cells |
| 指導教授: |
黃步敏
Huang, Bu-Miin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 細胞生物與解剖學研究所 Institute of Cell Biology and Anatomy |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | Midazolam 、非巴比妥類 、MA-10小鼠萊氏細胞癌 、細胞凋亡 |
| 外文關鍵詞: | Midazolam, Benzodiazepine, MA-10 mouse Leydig tumor cell, Cell Apoptosis |
| 相關次數: | 點閱:131 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
Midazolam是一種在臨床上被廣泛使用在鎮定及痲醉效果的用藥,他同時也是屬於benzodiazepine的藥物之一。在先前的研究發現,midazolam可以藉由調控在中樞神經內的GABAA 受體去達到其鎮定痲醉的效果,而且,先前研究也有發現,比起其它benzodiazepine的藥物而言,midazolam進入體內之後可以迅速的作用及被代謝掉,而在另一方面,也有研究報告指出midazolam它還可以調控腎上腺皮質的類固醇合成。值得注意的是,在一些患有荷爾蒙性質的癌症而言,像是前列腺癌等,在使用midaozlam這一類的痲醉藥物時會不會對其造成怎樣的影響是值得需要被注意的,在我們先前的研究發現,midazolam可以促使正常的小鼠萊氏細胞與MA-10小鼠萊氏細胞癌進行類固醇合成並且是藉由依賴StAR蛋白質所經由蛋白激酶C與A所進行的,特別的是他同時也可以導致MA-10小鼠萊氏細胞癌細胞死亡,有趣的是,這個現像在正常的小鼠萊氏細胞上並不會產生。因此,我們想要更進一步的去探討到底是什麼細胞機制可以促使MA-10小鼠萊氏細胞癌死亡,首先,我們想要先觀察細胞形態及MTT細胞活性檢測,看midazolam是否真的能夠促使MA-10小鼠萊氏細胞癌死亡,結果顯示,midazolam可以促使MA-10小鼠萊氏細胞癌細胞皺縮、飄浮,而在細胞活性檢測上我們也發現其midazolam對MA-10小鼠萊氏細胞癌有時間及劑量依存性的效果存在,此外,我們從流式細胞儀檢測的結果上也發現經由midazolam處理過後的MA-10小鼠萊氏細胞癌其細胞週期有sub-G1週期的增加,因此,我們接下來想要更進一步的證實其midazolam究竟是利用什麼樣的機制去調控MA-10小鼠萊氏細胞癌的死亡,我們由蛋白質電泳結果中發現midazolam可以促進caspae-8, -9與-3的表現量上升,並且去促使PARP這個蛋白質被切割使其失去功用,使細胞走向死亡 (p<0.05)。但在另一方面對於Bax、cytochrome-c並無進行調控其表現的差異產生 (p>0.05),可是卻對Bid這個蛋白質有明顯被切割的現像產生 (p<0.05)。此外,我們也去觀察了其它可能的凋亡機制路徑的蛋白質,由結果中顯示,我們發現其磷酸化Akt有被明顯抑制的效果產生 (p<0.05)。但另一方面也可刺激p38、磷酸化ERK及磷酸化JNK蛋白質的表現 (p<0.05)。更進一步我們也發現說midazolam可以明顯的增加細胞中氧自由基的產生。總括來說,我們發現midazolam可以藉由活化caspae-8, -9及-3並且去抑制磷酸化Akt的表現而使PARP這個蛋白質被去活化,在另一方面,我們也發現midazolam可刺激p38、磷酸化ERK及磷酸化JNK等蛋白質的表現並且伴隨著細胞中氧自由基的增加去促使細胞走向細胞死亡。
Abstract
Midazolam is widely used as a sedative anesthetic induction agent, and it is a derivative from benzodiazepine drugs. In previous study, midazolam could modulate GABAA receptor in central nervous system to achieve sedative effect. Moreover, midazolam could rapidly onset the action with highly metabolic clearance when compared with other benzodiazepine drugs. In fact, it has been reported that benzodiazepine could regulate adrenocortical steroidogenesis, indicating that midazolam might influence the steroidogenesis when it is used as a sedative drug. Particularly in prostate cancer patients, the effect of the midazolam on steroidogenesis may be detrimental to the underlying diseases. In our previous data we found that midazolam induced StAR-dependent steroidogenesis via PKC and PKA signaling transduction pathways in MA-10 mouse Leydig tumor cells and primary Leydig cells. In the present study, our data showed that midazolam would also induce MA-10 Leydig tumor cell rounding-up and membrane blebbing, and then cell death. But the cell apoptotic phenomenon was not found in primary mouse Leydig cells. Thus, we further examined the cell death effect of midazolam on MA-10 cells. First, we exploited MTT assay and flow cytometry to investigate, and results showed that midazolam decreased cells viability with the cell cycle accumulation of sub-G1 phase in time- and dose-dependent manners. We then examined the expression of apoptotic proteins by immunoblotting. We found that the expressions of caspase-8, -9 and -3, and PARP were significantly increased in higher dosages and later time points of midazolam treatment (p<0.05). Present data illustrated that the expression of Bax and cytochrome-c did not exchange (p>0.05), and Bid was significantly decreased (p<0.05). In addition, we detected the expression of possible apoptotic signal pathway proteins by immunoblotting. Results showed that midazolam could significantly reduce pAkt protein expression (p<0.05). Moreover, midazolam could significantly stimulate p38, pERK and pJNK proteins expression (p<0.05). Furthermore, we found that midazolam could significantly increase the production of reactive oxygen species (ROS). In conclusion, midazolam could induce MA-10 mouse Leydig tumor cell apoptosis through activating the caspase-8, -9, -3 and PARP pathway with ROS production, and inhibiting pAkt expression plus inducing p38, pERK and pJNK MAPK pathway.
References
Abdulghani, J., and El-Deiry, W.S. TRAIL receptor signaling and therapeutics. Expert Opin Ther Targets 14, 1091-1108. 2010.
Aitkenhead, A.R., Pepperman, M.L., Willatts, S.M., Coates, P.D., Park, G.R., Bodenham, A.R., Collins, C.H., Smith, M.B., Ledingham, I.M., and Wallace, P.G. Comparison of propofol and midazolam for sedation in critically ill patients. Lancet 2, 704-709. 1989.
Arnoult, D. Mitochondrial fragmentation in apoptosis. Trends Cell Biol 17, 6-12. 2007.
Bernas, T., and Dobrucki, J. Mitochondrial and nonmitochondrial reduction of MTT: interaction of MTT with TMRE, JC-1, and NAO mitochondrial fluorescent probes. Cytometry 47, 236-242. 2002.
Biron, V.A., Iglesias, M.M., Troncoso, M.F., Besio-Moreno, M., Patrignani, Z.J., Pignataro, O.P., and Wolfenstein-Todel, C. Galectin-1: biphasic growth regulation of Leydig tumor cells. Glycobiology 16, 810-821. 2006.
Cagnol, S., and Chambard, J.C. ERK and cell death: mechanisms of ERK-induced cell death--apoptosis, autophagy and senescence. FEBS J 277, 2-21. 2010
Carmody, R.J., and Cotter, T.G. Signalling apoptosis: a radical approach. Redox Rep 6, 77-90. 2001.
Casellas, P., Galiegue, S., and Basile, A.S. Peripheral benzodiazepine receptors and mitochondrial function. Neurochem Int 40, 475-486. 2002.
Cory, S., and Adams, J.M. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2, 647-656. 2002.
Cuenda, A., and Rousseau, S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 1773, 1358-1375. 2007.
Danial, N.N., and Korsmeyer, S.J. Cell death: critical control points. Cell 116, 205-219. 2004.
Decker, P., and Muller, S. Modulating poly (ADP-ribose) polymerase activity: potential for the prevention and therapy of pathogenic situations involving DNA damage and oxidative stress. Curr Pharm Biotechnol 3, 275-283. 2002.
Demirel, E., Ugur, H.C., Dolgun, H., Kahilogullari, G., Sargon, M.E., Egemen, N., and Kecik, Y. The neurotoxic effects of intrathecal midazolam and neostigmine in rabbits. Anaesth Intensive Care 34, 218-223. 2006.
Diemer, T., Allen, J.A., Hales, K.H., and Hales, D.B. Reactive oxygen disrupts mitochondria in MA-10 tumor Leydig cells and inhibits steroidogenic acute regulatory (StAR) protein and steroidogenesis. Endocrinology 144, 2882-2891. 2003.
Erdine, S., Yucel, A., Ozyalcin, S., Ozyuvaci, E., Talu, G.K., Ahiskali, B., Apak, H., and Savci, N. Neurotoxicity of midazolam in the rabbit. Pain 80, 419-423. 1999.
Fleury, C., Mignotte, B., and Vayssiere, J.L. Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84, 131-141. 2002.
Fulda, S., and Debatin, K.M. Modulation of TRAIL signaling for cancer therapy. Vitam Horm 67, 275-290. 2004.
Garcia-Pedrajas, F., and Arroyo, J.L. [Midazolam in anesthesiology]. Rev Med Univ Navarra 33, 211-221. 1989.
Gautam, D.K., Misro, M.M., Chaki, S.P., Chandra, M., and Sehgal, N. hCG treatment raises H2O2 levels and induces germ cell apoptosis in rat testis. Apoptosis 12, 1173-1182. 2007.
Guerrero, A.D., Chen, M., and Wang, J. Delineation of the caspase-9 signaling cascade. Apoptosis 13, 177-186. 2008.
Gupta, S. Molecular steps of death receptor and mitochondrial pathways of apoptosis. Life Sci 69, 2957-2964. 2001.
Gupta, S., Barrett, T., Whitmarsh, A.J., Cavanagh, J., Sluss, H.K., Derijard, B., and Davis, R.J. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J 15, 2760-2770. 1996.
Hales, D.B. Testicular macrophage modulation of Leydig cell steroidogenesis. J Reprod Immunol 57, 3-18. 2002.
Harris, C.E., Grounds, R.M., Murray, A.M., Lumley, J., Royston, D., and Morgan, M. Propofol for long-term sedation in the intensive care unit. A comparison with papaveretum and midazolam. Anaesthesia 45, 366-372. 1990.
Holloway, C.D., Kenyon, C.J., Dowie, L.J., Corrie, J.E., Gray, C.E., and Fraser, R. Effect of the benzodiazepines diazepam, des-N-methyldiazepam and midazolam on corticosteroid biosynthesis in bovine adrenocortical cells in vitro; location of site of action. J Steroid Biochem 33, 219-225. 1989.
Huang, B.M., Lai, H.Y., and Liu, M.Y. Concentration dependency in lead-inhibited steroidogenesis in MA-10 mouse Leydig tumor cells. J Toxicol Environ Health A 65, 557-567. 2002.
Istaphanous, G.K., and Loepke, A.W. General anesthetics and the developing brain. Curr Opin Anaesthesiol 22, 368-373. 2009.
Jin, Z., and El-Deiry, W.S. Overview of cell death signaling pathways. Cancer Biol Ther 4, 139-163. 2005.
Jourdain, A., and Martinou, J.C. Mitochondrial outer-membrane permeabilization and remodelling in apoptosis. Int J Biochem Cell Biol 41, 1884-1889. 2009.
Kasahara, Y., Iwai, K., Yachie, A., Ohta, K., Konno, A., Seki, H., Miyawaki, T., and Taniguchi, N. Involvement of reactive oxygen intermediates in spontaneous and CD95 (Fas/APO-1)-mediated apoptosis of neutrophils. Blood 89, 1748-1753. 1997.
Kim, R., Emi, M., Tanabe, K., Uchida, Y., and Arihiro, K. The role of apoptotic or nonapoptotic cell death in determining cellular response to anticancer treatment. Eur J Surg Oncol 32, 269-277. 2006.
Kitagawa, K., and Niikura, Y. Caspase-independent mitotic death (CIMD). Cell Cycle 7, 1001-1005. 2008.
Korytowski, W., Basova, L.V., Pilat, A., Kernstock, R.M., and Girotti, A.W. tBID/BAX permeabilization of the mitochondrial outer membrane as sensitized by cardiolipin hydroperoxide translocation: Mechanistic implications for the intrinsic pathway of oxidative apoptosis. J Biol Chem. 2011.
Lindsten, T., Ross, A.J., King, A., Zong, W.X., Rathmell, J.C., Shiels, H.A., Ulrich, E., Waymire, K.G., Mahar, P., Frauwirth, K., et al. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6, 1389-1399. 2000.
Loepke, A.W., and Soriano, S.G. An assessment of the effects of general anesthetics on developing brain structure and neurocognitive function. Anesth Analg 106, 1681-1707. 2008.
Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265-275. 1951.
Lunardi, N., Ori, C., Erisir, A., and Jevtovic-Todorovic, V. General anesthesia causes long-lasting disturbances in the ultrastructural properties of developing synapses in young rats. Neurotox Res 17, 179-188. 2010.
Martinez, V.G., Pellizzari, E.H., Diaz, E.S., Cigorraga, S.B., Lustig, L., Denduchis, B., Wolfenstein-Todel, C., and Iglesias, M.M. Galectin-1, a cell adhesion modulator, induces apoptosis of rat Leydig cells in vitro. Glycobiology 14, 127-137. 2004.
McGowan, F.X., Jr., and Davis, P.J. Anesthetic-related neurotoxicity in the developing infant: of mice, rats, monkeys and, possibly, humans. Anesth Analg 106, 1599-1602. 2008.
McLean, L., Soto, U., Agama, K., Francis, J., Jimenez, R., Pommier, Y., Sowers, L., and Brantley, E. Aminoflavone induces oxidative DNA damage and reactive oxidative species-mediated apoptosis in breast cancer cells. Int J Cancer 122, 1665-1674. 2008.
Miller, W.L. Steroidogenic acute regulatory protein (StAR), a novel mitochondrial cholesterol transporter. Biochim Biophys Acta 1771, 663-676. 2007.
Nishina, K., Akamatsu, H., Mikawa, K., Shiga, M., Maekawa, N., Obara, H., and Niwa, Y. The inhibitory effects of thiopental, midazolam, and ketamine on human neutrophil functions. Anesth Analg 86, 159-165. 1998.
Nordt, S.P., and Clark, R.F. Midazolam: a review of therapeutic uses and toxicity. J Emerg Med 15, 357-365. 1997.
Ono, K., and Han, J. The p38 signal transduction pathway: activation and function. Cell Signal 12, 1-13. 2000.
Orser, B.A., McAdam, L.C., Roder, S., and MacDonald, J.F. General anaesthetics and their effects on GABA(A) receptor desensitization. Toxicol Lett 100-101, 217-224. 1998.
Ozawa, T. Oxidative damage and fragmentation of mitochondrial DNA in cellular apoptosis. Biosci Rep 17, 237-250. 1997.
Parsons, M.J., and Green, D.R. Mitochondria in cell death. Essays Biochem 47, 99-114. 2010.
Pelicano, H., Carney, D., and Huang, P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7, 97-110. 2004.
Raman, M., Chen, W., and Cobb, M.H. Differential regulation and properties of MAPKs. Oncogene 26, 3100-3112. 2007.
Reves, J.G., Fragen, R.J., Vinik, H.R., and Greenblatt, D.J. Midazolam: pharmacology and uses. Anesthesiology 62, 310-324. 1985.
Saha, B., Mukherjee, A., Samanta, S., Saha, P., Ghosh, A.K., Santra, C.R., and Karmakar, P. Caffeine augments Alprazolam induced cytotoxicity in human cell lines. Toxicol In Vitro 23, 1100-1109. 2009.
Sakata, K., Kato, S., Fox, J.C., Shigemori, M., and Morimatsu, M. Autocrine signaling through Ras regulates cell survival activity in human glioma cells: potential cross-talk between Ras and the phosphatidylinositol 3-kinase-Akt pathway. J Neuropathol Exp Neurol 61, 975-983. 2002.
So, E.C., Chang, Y.T., Hsing, C.H., Poon, P.W., Leu, S.F., and Huang, B.M. The effect of midazolam on mouse Leydig cell steroidogenesis and apoptosis. Toxicol Lett 192, 169-178. 2010.
Tai, P., and Ascoli, M. Reactive Oxygen Species (ROS) Play a Critical Role in the cAMP-Induced Activation of Ras and the Phosphorylation of ERK1/2 in Leydig Cells. Mol Endocrinol 25, 885-893. 2010.
Tait, S.W., and Green, D.R. Mitochondria and cell death: outer membrane permeabilization and beyond. In Nat Rev Mol Cell Biol, pp. 621-632. 2010.
Takeda, K., Stagg, J., Yagita, H., Okumura, K., and Smyth, M.J. Targeting death-inducing receptors in cancer therapy. Oncogene 26, 3745-3757. 2007.
Tsai, S.C., Lu, C.C., Lin, C.S., and Wang, P.S. Antisteroidogenic actions of hydrogen peroxide on rat Leydig cells. J Cell Biochem 90, 1276-1286. 2003.
Virag, L. Structure and function of poly(ADP-ribose) polymerase-1: role in oxidative stress-related pathologies. Curr Vasc Pharmacol 3, 209-214. 2005.
Vlietstra, R.J., van Alewijk, D.C., Hermans, K.G., van Steenbrugge, G.J., and Trapman, J. Frequent inactivation of PTEN in prostate cancer cell lines and xenografts. Cancer Res 58, 2720-2723. 1998.
Wagner, E.F., and Nebreda, A.R. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9, 537-549. 2009.
Wang, X., Olberding, K.E., White, C., and Li, C. Bcl-2 proteins regulate ER membrane permeability to luminal proteins during ER stress-induced apoptosis. Cell Death Differ 18, 38-47. 2011.
Wigle, D.T., Turner, M.C., Gomes, J., and Parent, M.E. Role of hormonal and other factors in human prostate cancer. J Toxicol Environ Health B Crit Rev 11, 242-259. 2008.
Yang, D.D., Kuan, C.Y., Whitmarsh, A.J., Rincon, M., Zheng, T.S., Davis, R.J., Rakic, P., and Flavell, R.A. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389, 865-870. 1997.
Yoshida, H. [Machinery of programmed cell death]. Nippon Rinsho 63 Suppl 4, 401-406. 2005.
Zhang, L., and Fang, B. Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther 12, 228-237. 2005.
Zimmermann, K.C., Bonzon, C., and Green, D.R. The machinery of programmed cell death. Pharmacol Ther 92, 57-70. 2001.