簡易檢索 / 詳目顯示

研究生: 陳姿潔
Chen, Tzu-Chieh
論文名稱: 以非離子型界面活性劑及短鏈醇萃取亞麻籽木酚素之研究
Study on Extraction of Lignans from Flaxseed by Nonionic Surfactants and Short-Chain Alcohols
指導教授: 陳炳宏
Chen, Bing-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 98
中文關鍵詞: 亞麻籽木酚素非離子型界面活性劑短鏈醇萃取
外文關鍵詞: flaxseed, lignans, nonionic surfactants, short-chain alcohols, extraction
相關次數: 點閱:111下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 木酚素富含於植物中,而其中以亞麻籽內的木酚素含量最高。木酚素具有預防癌症及心血管疾病、降低膽固醇等功效,亦可被添加於健康食品中;且在人體腸道中,木酚素會被分解成腸內酯(enterolactone) 及腸二醇(enterodiol),兩者經證實具有良好的生理活性,因此木酚素在醫藥及食品營養方面有其重要性。現如今已發展出許多萃取木酚素的方法,但因使用有機溶劑,會造成環境的汙染且對人體有害,因此,本研究期能在安全、環保的前提下提升萃取效率與產量。
    故本實驗首先使用短鏈醇萃取木酚素,期能得到木酚素的最大含量;接著,希望可以用食用級的混合非離子型界面活性劑水溶液,並和以超臨界二氧化碳取代有機溶劑萃取木酚素的結果互為比較。而木酚素中主要的成分為開環異落葉松樹脂酚二葡萄糖苷(secoisolariciresinol diglucoside , SDG),故本實驗選擇SDG作為目標萃取物並以HPLC做定量及定性的分析。
    短鏈醇萃取結果顯示,乙醇的萃取能力隨著時間增加而增加,相對地,甲醇的萃取能力與時間沒有顯著的關係;然而,甲醇輔以0.5 N氫氧化納萃取可得最大萃取量,每克亞麻籽可得14.43毫克的木酚素。界面活性劑水溶液萃取結果顯示,單一界面活性劑水溶液以Tween 20的萃取效果最佳;Span 20/PE 64混合界面活性劑水溶液的萃取能力隨著濃度的減少而下降,也隨著時間的增加而上升,並且,最大萃取量為每克的亞麻仁籽可得11.56毫克的木酚素。超臨界二氧化碳萃取結果顯示,溫度以及壓力對萃取量無顯著的影響,而當萃取溫壓為40 C和35 MPa有最大的萃取產率。而比較三種萃取方式後,以混合界面活性劑水溶液萃取廢棄亞麻籽較易應用於食品及醫藥中。

    In this work, three extraction methods are mainly attempted: extraction by short-chain alcohols, extraction by nonionic surfactants, and extraction by supercritical CO2 (SFE-CO2). The HPLC was employed to analyze qualitatively and quantitatively the components of flaxseed lignans, in which the secoisolariciresinol diglucoside (SDG) is the most abundant. The methanol with alkaline hydrolysis resulted in a highest yield of lignans (14.43 mg/g flaxseed). In the case of non-ionic surfactants, the results of Span 20/PE 64 mixed non-ionic surfactants solution extraction showed that extraction capacity is lessened with decreasing concentration of surfactant and amount of lignans extracted increased with a prolonged extraction time. The maximum extraction yield of lignans by Span 20/PE 64 mixed non-ionic surfactants was 11.56 mg/g flaxseed. The results of SFE-CO2 showed that the maximum extraction yield of lignans occurred at 40 C and 35 MPa.

    摘要 I Extended Abstract II 誌謝 XI 目錄 XII 表目錄 XVI 圖目錄 XVII 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 木酚素 3 2.1.1 亞麻籽簡介 3 2.1.2 木酚素主要成分 9 2.2 萃取方法 12 2.2.1 酶水解法 (Enzyme hydrolysis) 12 2.2.2 酸或鹼水解法(Acid or alkaline hydrolysis) 12 2.2.3溶劑萃取法 (Solvent extraction) 12 2.2.4 超臨界萃取法 (Supercritical fluid extraction) 13 2.3 乳化 (Emulsification) 14 2.3.1 乳化的原理 14 2.3.2 乳化方法 14 2.3.3 微乳液(Microemulsion) 15 2.4 界面活性劑介紹 16 2.4.1 界面活性劑種類 16 2.4.2 界面活性劑的篩選 18 2.4.3 微胞與臨界微胞濃度 19 2.4.4 親水親油平衡 (Hydrophilic-Lipophilic Balance, HLB) 21 2.4.5 界劑協同作用 (Synergism) 23 2.4.6 雲點溫度 (Cloud point) 24 2.5 超臨界萃取法 25 2.5.1 超臨界流體的歷史 25 2.5.2 超臨界流體性質 26 2.5.3 超臨界流體萃取方式 30 第三章 研究方法 31 3.1 實驗流程 31 3.2 實驗藥品 32 3.3 實驗儀器 36 3.4 實驗方法 43 3.4.1 木酚素主成分分析及檢量線製作 43 3.4.2 亞麻籽前處理 43 3.4.3 短鏈醇萃取 44 3.4.4界面活性劑水溶液萃取 45 3.4.5 超臨界萃取 46 第四章 結果與討論 47 4.1 木酚素主成分分析及檢量線製作 47 4.3 短鏈醇萃取 51 4.3.1 乙醇對木酚素萃取量之影響 51 4.3.2 以氫氧化鈉輔助乙醇萃取對木酚素萃取量之影響 56 4.3.3 甲醇對木酚素萃取量之影響 57 4.3.4 以氫氧化納輔助甲醇萃取對木酚素萃取量之影響 61 4.3.5 乙二醇對木酚素萃取量之影響 63 4.3.6 亞麻籽前處理對木酚素萃取量之影響 65 4.3.7 以短鏈醇與去離子水萃取木酚素含量之比較 66 4.4 混合界面活性劑萃取 68 4.4.1 界面活性劑萃取之HPLC圖譜分析 68 4.4.2 不同界面活性劑對木酚素萃取效果的影響 70 4.4.3 混合界面活性劑配方對萃取量的影響 71 4.4.3.1 Span 20與Tween 20 71 4.4.3.2 Span 20 與PE 64 73 4.4.4 混合界面活性劑的濃度對於萃取的影響 75 4.4.5 萃取時間與萃取量的關係 77 4.5 超臨界流體萃取 79 4.5.1 超臨界流體萃取之HPLC圖譜分析 79 4.5.2 萃取溫度對於木酚素萃取量的影響 81 4.5.3 萃取壓力對於木酚素萃取量的影響 82 4.5.4 共溶劑Tween 20對木酚素萃取量的影響 83 4.6 三種萃取方法比較 84 第五章 結論與建議 85 5.1 結論 85 5.2 建議 87 參考文獻 88 附錄 93

    Adlercreutz, H.; Mazur, W. Phytoestrogen and western disease. Annals of Medicine. 1997; 29:95-120.

    Aludatt, M.H.; Rababah, T.; Ereifej, K.; Alli, I. Distribution, antioxidant and characterisation of phenolic compounds in soybeans, flaxseed and olives. Food Chemistry. 2013; 139:93-99

    ASTM. D2024-09. Standard Test Method for Cloud Point of Nonionic Surfactants: American Society for Testing and Materials; 2009.

    Baret, J.C.; Kleinschmidt, F.; Harrak, A.E.; Griffiths, A.D. Kinetic aspects of emulsion stabilization by surfactants: a microfluidic analysis. Langmuir. 2009; 25(11):6088-6093.

    Becher, P. Encyclopedia of emulsion technology. Journal of Dispersion Science and Technology. 1996; 4.

    Comin, L.M.; Temelli, F.; Saldana, M.A. Supercritical CO2 Extraction of Flax Lignans. Journal of the American Oil Chemists' Society. 2011; 88:707-715

    Drew, M. Surfaces, interfaces, and colloids: principles and applications. Wiley-VCH; 1999.

    Eliasson, C.; Kamal-Eldin, A.; Andersson, R.; Aman, P. High-performance liquid chromatographic analysis of secoisolariciresinol diglucoside and hydroxycinnamic acid glucosides in flaxseed by alkaline extraction. Journal of Chromatography A. 2003; 1012:151-159

    Filippi, R.P.D. CO2 as a solvent:Application to fats, oils and other materials. Chemistry and Industry. 1982; 19:391-398.

    Haworth, R.D. Natural resins. Annual Reports on the Progress of Chemistry. 1936; 33:266-279.

    Holler, F.J.; Crouch, S.R. Skoog and West’s fundamentals of analytical chemistry. 9 th ed. 2014
    Imran, M.; Ahmad, N.; Anjum, F.M.; Khan, M.K.; Mushtaq, Z.; Nadeem, M.; Hussain, S. Potential protective properties of flax lignan secoisolariciresinol diglucoside. Nutrition Journal. 2015; 14:71

    Johnsson, P.; Afaf, K.E; Lundgren, L.N.; Aman, P. HPLC method for analysis of secoisolariciresinol diglucoside in flaxseeds. Journal of Agricultural and Food Chemistry. 2000; 48:5216-5219

    Kitts, D.D.; Yuan, Y.V.; Wijewickreme, A.N.; Thompson, L.U. Antioxidant activity of the flaxseed lignan secoisolariciresinol diglycoside and its mammalian lignan metabolites enterodiol and enterolactone. Molecular and Cellular Biochemistry. 1999; 202:91-100.

    Li, X.; Yuan, J.P.; Xu, S.P.; Wang, J.H.; Liu, X. Separation and determination of secoisolariciresinol diglucoside oligomers and their hydrolysates in the flaxseed extract by high-performance liquid chromatography. Journal of Chromatography A. 2008; 1185:223-232

    Mazur, W. Phytoestrogen contents in food. Baillieres Clin Endocrinol Metab. 1998; 12:729-42.

    McHugh, M.A.; Krukonis, V.J. Supercritical Fluid Extraction: Principles and Practice. Butterworths. 1986.

    Meagher, L.P.; Beecher, G.R.; Flanagan, V.P.; Li, B.W. Isolation and characterization of the lignans, isolariciresinol and pinoresinol, in flaxseed meal. Journal of Agricultural and Food Chemistry. 1999; 47:3173-3180

    Moss, G.P. Nomenclature of lignans and neolignans. Pure and Applied Chemistry. 2000; 72:1493-1523
    Muneo, S.; Yamauchi, Y.; Okuyama, T. Fractionation by Packed-Column SFE and SFC: Principles and Applications. Wiley-VCH. 1994.

    Myers, D. Surfactant science and technology. 3rd ed. Wiley-Interscience. 2005

    Patel, D.; Vaghasiya, J.; Pancholi, S.S.; Paul, A. Therapeutic potential of secoisolariciresinol diglucoside: A plant lignan. International Journal of Pharmaceutical Sciences and Drug Research. 2012; 4(1):15-18

    Patterson, C.A. Flaxseed bioactives more than just omega-3. Agriculture and Agri-Food Canada. August 2008

    Rosen, M.J. Sufactants and interfacial phenomena. 2nd ed. Wiley-VCH. 2004.

    Sainvitu, P.; Nott, K.; Richard, G.; Blecker, C.; Jerome, C.; Wathelet, J.P.; Paquot, M.; Deleu, M. Structure, properties and obtention routes of flaxseed lignan secoisolariciresinol: a review. Biotechnology, Agronomy, Society and Environment (BASE). 2012; 16(1):115-124

    Sarajlija, H.; Cukelj, N.; Novotni, D.; Mrsic, G.; Brncic, M.; Curic, Duska. Preparation of flaxseed for lignan determination by gas chromatography-mass spectrometry method. Czech Journal of Food Sciences. 2012; 30(1):45-52

    Schwartz, H.; Sontag, G. Determination of secoisolariciresinol, lariciresinol and isolariciresinol in plant foods by high performance liquid chromatography coupled with coulometric electrode array detection. Journal of Chromatography B. 2006; 838:78–85

    Smith, R.M. Supercritical Fluid Chromatography. Royal Society of Chemistry 1988.

    Stokes, R.J.; Evans, D.F. Fundamentals of Interfacial Engineering. Wiley-VCH. 1996.

    Tadros, T.F. Emulsion science and technology. John Wiley & Sons. 2009.
    Thompson, L.U.; Cunnane, S.C. Flaxseed in human nutrition. 2nd ed. American Oil Chemists’ Society. 2003

    Umezawa, T. Diversity in lignan diosynthesis. Phytochemistry Reviews. 2003; 2:371-390

    Waszkowiak, K.; Swiglo, G. Binary ethanol–water solvents affect phenolic profile and antioxidant capacity of flaxseed extracts. European Food Research and Technology. 2016; 242:777-786

    Willfor, S.M.; Smeds, A.I.; Holmbom, B.R.; J. Chromatogr. Chromatographic analysis of lignans. Journal of Chromatography A. 2006; 1112:64-77

    Zhang, Z.S.; Li, D.; Wang, L.J.; Li, D.; Li, S.J.; Ozkan, N. Characteristics of flaxseed oil from two different flax plants. International Journal of Food Properties. 2011; 14:1286-1296

    Zhang, Z.S.; Li, D.; Wang, L.J.; Ozkan, N.; Chen, X.D.; Mao, Z.H.; Yang, H.Z. Optimization of ethanol–water extraction of lignans from flaxseed. Separation and Purification Technology. 2007; 57:17-24

    刈米孝夫. 界面活性劑的原理與應用. 高立圖書有限公司. 1989;第3版.

    李偉如; 鄭培益; 蘇南維; 李敏雄. 利用高效液相層析法搭配內標準品定量芝麻素及芝麻林素. 台灣農業化學與食品科學. 2013; 51(2):102-108

    桂椿雄. 超臨流體萃取技術之簡介. 化學. 1998; 56(4):303-309.

    陳亞雷. 澱粉水解酵素於超臨界二氧化碳系統中反應之研究. 國立台灣大學碩士論文. 1998.

    曹恆光; 連大成. 淺談微乳液. 物理雙月刊. 2001; 23(4):488-493

    黃健政; 張譽穎; 黃英旭; 李欣格; 陳心怡. 乳化劑性質與超音波乳化對台灣數種柑橘類果皮精油製備成O/W 乳化物特性與抑菌作用的影響. 行政院國家科學委員會; 2005.

    趙承琛. 界面科學基礎. 復文書局. 1993;第12版.

    楊顯整. 超臨界綠色技術之概述. 綠基會通訊. 2009:7-11.

    傅維萱. 以非離子型界面活性劑及超臨界二氧化碳萃取檸檬皮精油之研究: 國立成功大學; 2014.

    魏宇晨. 以非離子型界面活性劑萃取檸檬皮精油之研究: 國立成功大學; 2012.

    羅仁廷. 以混合界面活性劑系統當作疏水性藥物之藥物輸送載體之研究: 國立成功大學; 2007.

    無法下載圖示 校內:2021-08-06公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE