| 研究生: |
吳岸樺 Wu, An-Hua |
|---|---|
| 論文名稱: |
膽紅素模版高分子薄膜之製備及在感測上之應用與探討 On the preparation and application of molecularly imprinted polymer thin film for the detection of bilirubin |
| 指導教授: |
許梅娟
Syu, Mei-Jywan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 分子模版高分子 、膽紅素 、流動注射分析 、高分子薄膜電極 、石英振盪微天平 |
| 外文關鍵詞: | bilirubin, quartz crystal microbalance, molecularly imprinted polymer thin film |
| 相關次數: | 點閱:84 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
分子模版高分子 (Molecularly imprinted polymer , MIP) 具有對目標分子特定的辨識力,乃是利用擬似抗體的概念,將具有可與目標分子產生吸引力之功能性高分子單體與模版分子藉由共價結合或非共價吸引力結合為穩定的複合物型態,再利用交聯劑與功能性單體之聚合固定單體的位置,如此形成的辨識基座,只要利用適當溶劑將高分子基材中的模版分子洗出,便可製備出對模版分子有優異親和力及特異選擇性之分子模版高分子。
本研究以造成黃疸的指標分子膽紅素 (bilirubin IXα) 作為模版分子,對烯乙基吡啶 (4-vinylpyridine) 及二乙烯苯 (divinylbenzene) 分別為功能性單體及交聯劑,製備膽紅素模版高分子,清洗過的高分子對膽紅素進行吸附測試,並與無模版高分子比較,以判斷辨識基座的效能,膽紅素模版高分子的物性分別以TGA、SEM、NMR進行分析。
為判定膽紅素模版高分子作為生化感測器辨識元件的潛力,以光接枝聚合的方式將模版高分子固定於石英振盪微天平之電極表面,並利用硫醇增強高分子薄膜與金電極間之附著性,模版高分子薄膜的性質以SEM進行觀察,製備出之薄膜的厚度約150 nm,膽紅素的感測則以流動注射 (flow-injection analysis) 的方式進行,膽紅素濃度對頻率變化的校正,範圍由0.5 ~ 5.5 mg/dl,最大吸附量為62 mg bilirubin/g MIP,膽紅素模版高分子薄膜的選擇性由相似物膽綠素的吸附判定,膽紅素之吸附頻率變化為膽綠素的24.3倍。膽紅素模版高分子的對膽紅素濃度之吸附頻率變化為無模版高分子的10倍。石英晶片電極可以重複使用且有良好的製備再現性。膽紅素在雙成份溶液中的選擇性以及其它相關之性能測試均在研究中加以討論,並嚐試分析臨床膽汁檢體及老鼠血清樣本以判斷其實用性。
A biomimic sensor for the detection of bilirubin was developed by combining a molecularly imprinted polymer (MIP) thin film and quartz crystal microbalance (QCM). A thiol chemical was used to modify the surface of the QCM gold electrode. Thus, excellent adhesion was achieved between the synthetic polymer film and the gold surface of the chip. Surface photo-graft polymerization was applied to anchor the MIP film so that a polymer film of approximate 150 nm could be obtained. The fabricated sensor was able to discriminated bilirubin in solution owing to its specific binding of the imprinted sites. A quartz crystal microbalance with flow injection analysis (FIA) system was applied to monitor bilirubin concentration in solution. QCM signals were resulted from the specific interaction between the MIP and the target analyte. A linear correlation between the frequency shifts and bilirubin concentrations ranging from 0.5 mg/dl to 5.5 mg/dl was obtained. Maximum binding capacity was approximate 62 mg bilirubin/ g MIP film. The imprinted ratio, defined as the binding capacity of the MIP to that of the non-MIP, was 10. The selectivity as well as the sensitivity of such an artificial biosensor was also demonstrated. The selectivity of the MIP film was confirmed using biliverdin as the analogue of bilirubin. A maximum selectivity of 24.3 could be achieved. The binding capacity of the MIP film could be regenerated by eluted with proper solvent. Both reproducibility and reusability were confirmed by the QCM detection signals from the same MIP/QCM chip and several MIP/QCM chips prepared by the same protocol. A single MIP/QCM chip could be operated repeatedly for hundreds of hours with reliably reproducible detection signals. Bile samples from patients and mice serum were also used for detection of bilirubin from this system. In conclusion, the MIP thin film for QCM continuous detection of bilirubin was successfully prepared.
[1] B. R. Eggins, Chemical Sensors and Biosensors, John Wiley, 2002.
[2] S. Dong, B. Q. Wang, Electrochemical biosensing in extreme environment, Electroanalysis, 14(1), 7-16, 2002.
[3] H. Nakamura, I. Karube, Current research activity in biosensors, Anal Bioanal Chem, 377, 446-468, 2003.
[4] 鄧景鴻,以膽紅素為模版材料之製備及吸脫附感測之探討,國立成功大學,2003.
[5] K. A. Marx, Quartz crystal microbalance: A useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface, Biomacromolecules, 4, 1100-1120, 2003.
[6] K. A. Marx, T, Zhou, R. Sarma, Quartz crystal microbalance measurement of self-assembled micellar tubules of the amphiphilic decyl ester of D-tyrosine and their enzymatic polymerization, Biotechnol Prog, 15, 522-528, 1999.
[7] Y. Sato, K. Mizutani, S. Shimazu, S. Ye, K. Uoski, Electrochemical quartz crystal microbalance studies of the electrodeposition and subsequent cross-linking of poly(N-vinylcarbazole) films, J Electroanal Chem, 433, 115-123, 1997.
[8] K. A. Marx, K. S. Alva, R. Sarma, Self-assembled micron-scale fibre structures are formed by amphiphilic decyl ester derivatives of the d- and l-tyrosine amino acids prior to and following enzymatic ring polymerization, Mater Sci Eng C, 11, 155-163, 2000.
[9] M. Satjapipat, R. Sanedrin, F. Zhou, Selective desorption of alkanethiols in mixed self-assembled monolayers for subsequent oligonucleotide attachment and DNA hybridization, Langmuir, 17, 7637-7644, 2001.
[10] T. Kobayashi, Y. Murawaki, P. S. Reddy, M. Abe, N. Fujii, Molecular imprinting of caffeine and its recognition assay by quartz-crystal microbalance, Anal Chim Acta, 435, 141-149, 2001.
[11] J. J. Chance, W. C. Purdy, Signal enhancement using a swellable polymer TSM acoustic wave sensor coating, Anal Lett, 32, 1751-1760, 1999.
[12] E. Uttenthaler, M. Schraml, J. Mandel, S. Drost, Ultrasensitive quartz crystal microbalance sensors for detection of M13-Phages in liquids, Biosens Bioelectron, 16, 735-743, 2001.
[13] M. A. Cooper, F. N. Duitsev, T. Minson, V. P. Ostanin, C. Abell, D. Klenerman, Direct and sensitive detection of a human virus by rupture event scanning, Nature Biotechnol, 19, 833-837, 2001.
[14] A. Janshoff, H. J. Galla, C. Steinem, Piezoelectric mass-sensing devices as biosensors - an alternative to optical biosensors, Angew Chem, Int Ed, 39, 4004-4032, 2000.
[15] B. Sellergren, Molecularly Imprinted Polymers, Elseriver Science Publishers, United Kingdom, 3-9, 2000.
[16] G.. Wulff, Molecular imprinting in cross-linked materials with the aid of molecular templates – a way towards artificial antibodies, Angew Chim, Int Ed Engl, 34, 1812-1832, 1995.
[17] K. Mosbach and O. Ramström, The emerging technique of molecular imprinting and its future impact on biotechnology, Bio/Technology, 14, 163-170, 1996.
[18] K. Mosbach, Molecular imprinting, Trends in Biochemical Sciences, 19, 9-14, 1994
[19] F. Svec, J. M. Frechet, Continuous rods of macroporous polymer as high performance liquid chromatography separation media, Anal Chem, 64, 820-822, 1992.
[20] P. K. Dhal, S. Vidyasankar, F. H. Arnold, Surface grafting of functional polymers to macroporous poly(trimethylolpropane trimethacrylate), Chem Mater, 7, 154-162, 1995.
[21] D. Vaihinger, K. Landfester, I. Krauter, H. Brunner, G. E. M. Tovar, Molecularly imprinted polymer nanospheres as synthetic affinity receptors obtained by miniemulsion polymerisation, Macromol Chem Phys, 203, 1965-1973, 2002.
[22] M. Yoshida, K. Uezu, M. Goto, S. Furusaki, Required properties for functional monomers to produce a metal template effect by a surface molecular imprinting technique, Macromol, 32, 1237-1243, 1999.
[23] C. J. Percival, S. Stanley, A. Braithwaite, M. I. Newton, G. McHale, Molecular imprinted polymer coated QCM for the detection of nandrolone, Analyst, 127, 1024-1026, 2002.
[24] S. A. Piletsky, H. Matuschewski, U. Schedler, A. Wilpert, E. V. Piletska, T. A. Thiele, M. Ulbricht, Surface functionalization of porous polypropylene membranes with molecularly imprinted polymers by photograft copolymerization in water, Macromol, 33, 3092-3098, 2000.
[25] S. A. Piletsky, E. V. Piletskaya, A. V. Elgersma, K. Yano, I. Karube, Atrazine sensing by molecularly imprinted membranes, Biosens Bioelectron, 10, 959-964, 1995.
[26] B. R. Hart, K. J. Shea, Synthetic peptide receptors: molecularly imprinted polymers for the recognition of peptides using peptide-metal interactions, J Am Chem Soc, 123, 2072-2073, 2001.
[27] H. Shi, W. B. Tsai, M. D. Garrisom, S. Ferrari, B. D. Ratner, Template-imprinted nanostructured surfaces for protein recognition, Nature, 398, 593-597, 1999.
[28] S. M. D’Souza, C. Alexander, S. W. Carr, A. M. Waller, M. J. Whitcombe, E. N. Vulfson, Directed nucleation of calcite at crystal-imprinted polymer surface, Nature, 398, 312-319, 1999.
[29] M. Yoshida, K. Uezu, M. Goto, F. Nakashio, Metal ion-imprinted resins with novel bifunctional monomer by surface template polymerization, J Chem Eng Jap, 29, 174-176, 1996.
[30] S. Dai, Y. S. Shin, C. E. Barnes, L. M. Toth, Enhancement of uranyl adsorption capacity and selectivity on silica sol-gel glasses via molecular imprinting, Chem Mater, 9, 2521-2525, 1997.
[31] K. Hosoya, Y. Shirasu, K. Kimata, N. Tanaka, Molecularly imprinted chiral stationary phase prepared with racemic template, Anal Chem, 70, 943-945, 1998.
[32] D. Kriz, C. B. Kriz, L. I. Andersson, K. Mosbach, Thin-layer chromatography based on the molecular imprinting technique, Anal Chem, 66, 2636-2639, 1994.
[33] A. Zander, P. Findlay, T. Renner, B. Sellergren, Analysis of nicotine and its oxidation products in nicotine chewing gum by a molecularly imprinted solid-phase extraction, Anal Chem, 70, 3304-3314, 1998.
[34] G. Vlatakis, L. I. Andersson, R. Muller, K. Mosbach, Drag assay using antibody mimics made by molecular imprinting, Nature, 361, 645-347, 1993.
[35] R. Lerner, S. J. Benkovic, P. G. Schultz, At the crossroads of chemistry and immunology: catalytic antibodies, Sci, 252, 659-667, 1991.
[36] P. Turkewitsch, B. Wandelt, G. D. Darling, W. S. Powell, Fluorescent functional recognition sites through molecular imprinting. A polymer-based fluorescent chemosensor for aqueous cAMP, Anal Chem, 70, 2025-2030, 1998.
[37] K. Haupt, K. Noworyta, W. Kutner, Imprinted polymer-based enantioselective acoustic sensor using a quartz crystal microbalance, Anal Commun, 36, 391-393, 1999.
[38] A. Kugimiya, H. Yoneyama, T. Takeuchi, Sialic acid imprinted polymer-coated quartz crystal microbalance, Electroanalysis, 12(16), 1322-1326, 2000.
[39] C. J. Percival, S. Stanley, M. Galle, A. Braithwaite, M. I. Newton, G. McHale, W. Hayes, Molecular-imprinted, polymer-coated quartz crystal microbalances for the detection of terpenes, Anal Chem, 73, 4225-4228, 2001.
[40] C. Y. Lin, D. F. Tai, T. Z. Wu, Discrimination of peptides by using a molecularly imprinted piezoelectric biosensor. Chem Eur J, 9, 5107-5110, 2003.
[41] 李源德等主編,一般內科學/Internal medicine for students and clinicians,臺北市,金名,1997.
[42] T. Dorner, B. Knipp, D. A. Lightner, Heteronuclear noe analysis of bilirubin solution conformation and intramolecular hydrogen bonding, Tetrahedron, 53, 2697-2716, 1997.
[43] E. Sykes, E. Epstein, Laboratory measurement of bilirubin, Clinics in Perinatology, 17, 397-415, 1990.
[44] K. L. J. Vink, W. Schuurman, R. V. Gansewinket, Direct spectrophotometry of bilirubin in serum of the newborn, with use of caffeine reagent, Clin Chem, 34, 67-70, 1988.
[45] J. J. Lauff, M. E. Kasper, Separation of bilirubin species in serum and bile by high performance reversed-phase liquid chromatography, J Chromat, 226, 391-637, 1982.
[46] B. T. Doumas, B. W. Perry, E. A. Sasse, J. V. Straumfjord, Jr., Standardization in bilirubin assays: evaluation of selected methods and stability of bilirubin solutions, Clin Chem, 19, 948-993, 1997.
[47] C. Zhang, GP. Feng, SF. Sui, Study on behavior of QCM sensor in loading variation, Sensors and Actuators B, 40, pp. 111-115, 1997.