| 研究生: |
何明信 Ho, Ming-Shing |
|---|---|
| 論文名稱: |
整合移動監測系統、混合土地利用迴歸模型和空氣品質監測站數據,比較城市級PM2.5時空暴露差異及其對健康負擔的影響 Integrating mobile monitoring system, hybrid land use regression model, and air quality monitoring station data for comparing a city-level spatiotemporal PM2.5 exposure estimation and its influence on health burden |
| 指導教授: |
蔡朋枝
Tsai, Perng-Jy |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 暴露評估(EA) 、空氣品質監測站(AQMS) 、混合土地利用回歸模式(h_LUR) 、移動監測系統(MMS) 、健康影響評估(HIA) 、PM2.5 |
| 外文關鍵詞: | Exposure assessment (EA), Air quality monitoring station (AQMS), Hybrid_land use regression (h_LUR), Mobile monitoring system (MMS), Health impact assessment (HIA), PM2.5 |
| 相關次數: | 點閱:51 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大氣環境中PM2.5是影響健康的主要危險因子之一,為了減輕人群健康負擔,適當的暴露評估(EA)至關重要。本論文整合了三種常見的EA方法-移動監測系統(MMS)、混合土地利用迴歸模式(h_LUR)和空氣品質監測站(AQMS)數據,以城市尺度的時空地面暴露視角來呈現居民的暴露結果,並比較由此得出的相關健康負擔差異。
我們以台灣台中市的沙鹿地區做為研究區域,該區域已安裝有AQMS收集PM2.5數據,同時我們透過已發表的h_LUR模型獲得了1年的PM2.5估計數據,也自行設計MMS進行地面PM2.5採樣。為了評估地面居民的暴露程度,我們藉由GPS信息,結合了在相同時段與地區範圍內的MMS和h_LUR小時數據,並收集了其他共變量來構建地面預測模型。我們利用GPS特意將研究區域劃分全區為3個區域(工業區、城區和港區)來比較水平空間PM2.5差異。對於長期暴露估計,透過將9年(2013-2021年)AQMS數據(即AQMS9yr),合併到h_LUR模型和地面預測模型(即h_LUR9yr,MMS9yr)中獲得整個區域和3個區域的9年長時間數據集。
在1年的MMS採樣、h_LUR模式和AQMS對應的每小時PM2.5濃度中,h_LUR和MMS可以呈現水平區域空間差異(在PM2.5水準上,城區=工業區>港區),而AQMS則無法呈現。另外,通過多元線性迴歸分析建立了合適全區和3個區域的地面預測模型(R2=0.61)。本論文應用地面預測模型,獲得地面9年的年度PM2.5幾何平均值(GM)後,我們發現AQMS年均數據逐年持續下降(從22至11ug/m3),但低於h_LUR(29.7~ 14.9ug/m3)和MMS(32~18.1ug/m3)。這說明了使用AQMS跟h_LUR都可能低估地面居民的暴露。以2021年的MMS年均PM2.5數據來看,將此暴露評估結果應用於HIA時,使用AQMS監測數據作為人群暴露估計會導致疾病負擔(5種特定疾病)的低估(低估26%~42%),而使用LUR模型則會低估少一些(11%~18%)。我們還發現,以MMS年均數據而言,每減少一個單位PM2.5(ug/m3),就能減少疾病負擔歸因分數AF(%)(LRI:1.24,IHD:0.76,LC:0.75,COPD:0.65,stroke:0.76)。控制PM2.5進而對疾病負擔的降低,有益於採行PM2.5控制與預防對策的權衡。
本論文結果顯示,有效的人群地面EA方法值得開發和研究,以免低估PM2.5對健康負擔的貢獻。
(Objectives) Ambient PM2.5 is a significant health risk factor. To understand the actual adverse health effects on ground residents, it is imperative to conduct a comprehensive ground exposure assessment (EA). This study applies three common ground EA methods, Mobile Monitoring System (MMS), Hybrid Land Use Regression (h_LUR), and Air Quality Monitoring Stations (AQMS), to obtain distinct datasets to characterize a city-scale ground exposure and associated health burdens.
(Methods) In the study area, Shalu area in Taichung City, a government-operated AQMS was strategically installed. 1-year PM2.5 datasets collected from the three EA methods were utilized to compare each other and establish ground predictive models (by multiple linear regression). To facilitate comparison of horizontal spatial PM2.5 differences, we employed GPS coordinates to divide the study area into three distinct regions (i.e., industrial, urban and harbor). For long-term ground exposure estimation and subsequent health impact assessment (HIA), we obtained temporal city area and regional MMS data (referred to as MMS9y) using predictive models based on a nine-year dataset spanning from 2013 to 2021. This dataset was derived from AQMS data covering the same nine-year period (AQMS9yr) and the corresponding h_LUR model (h_LUR9yr).
(Results) In both the h_LUR and MMS datasets, higher levels of PM2.5 levels were observed in urban and industrial regions followed by the harbor region. In contrast, AQMS data did not and cannot exhibit these regional differences. The ground predictive models demonstrated reasonable performance with R-squared values (R2= 0.61). When the prediction model was applied to obtain the nine-year annual geometric mean (GM) of the PM2.5 data, a notable trend emerged. AQMS data showed a consistent annual decrease, reducing from 22 to 11 µg/m³, which was lower compared to the h_LUR model (ranging from 29.7 to 14.9 µg/m³) and MMS (ranging from 32 to 18.1 µg/m³). Both EA methods of AQMS and h_LUR underestimated residents’ exposure.
When extrapolating these results to HIA for the year 2021 and comparing with MMS data, it became evident that utilizing AQMS monitoring data as population exposure led to a substantial underestimation of disease burdens, with underestimations ranging from 26% to 42%. The use of the h_LUR model exhibited slightly lower underestimations, ranging from 11% to 18%. Furthermore, our analysis revealed that a reduction in per unit PM2.5 (µg/m³) measured by MMS corresponded to reductions in fractions attributed to disease burden (AF%) as follows: Lower Respiratory Infections (LRI): 1.24, Ischemic Heart Disease (IHD): 0.76, Lung Cancer (LC): 0.75, Chronic Obstructive Pulmonary Disease (COPD): 0.65, and stroke: 0.76.
(Conclusion) Our study emphasizes the critical significance of carefully selecting appropriate EA methods for the adequate evaluation of spatiotemporal ground-level PM2.5. Moreover, it sheds light on the consequential implications of these methodological choices in assessing population health risks associated with air quality of PM2.5.
Alameddine, I., Esber, L. A., Zeid, E. B., Hatzopoulou, M., & El-Fadel, M. (2016). Operational and environmental determinants of in-vehicle CO and PM2. 5 exposure. Science of the Total Environment, 551, 42-50. https://www.sciencedirect.com/science/article/pii/S0048969716300304?via%3Dihub
Arranz, M. C., Moreno, M. F. M., Medina, A. A., Capitan, M. A., Vaquer, F. C., & Gomez, A. A. (2014). Health impact assessment of air pollution in Valladolid, Spain. Bmj Open, 4(10), Article e005999. https://doi.org/10.1136/bmjopen-2014-005999
Behera, S. N., & Sharma, M. (2010). Reconstructing Primary and Secondary Components of PM2.5 Composition for an Urban Atmosphere. Aerosol Science and Technology, 44(11), 983-992. https://doi.org/10.1080/02786826.2010.504245
Blanchard, C. L., Tanenbaum, S., & Hidy, G. M. (2014). Spatial and temporal variability of air pollution in Birmingham, Alabama. Atmospheric Environment, 89, 382-391. https://doi.org/10.1016/j.atmosenv.2014.01.006
Borge, R., Narros, A., Artinano, B., Yague, C., Gomez-Moreno, F. J., de la Paz, D., Roman-Cascon, C., Diaz, E., Maqueda, G., Sastre, M., Quaassdorff, C., Dimitroulopoulou, C., & Vardoulakis, S. (2016). Assessment of microscale spatio-temporal variation of air pollution at an urban hotspot in Madrid (Spain) through an extensive field campaign. Atmospheric Environment, 140, 432-445. https://doi.org/10.1016/j.atmosenv.2016.06.020
Brantley, H. L., Hagler, G. S. W., Kimbrough, E. S., Williams, R. W., Mukerjee, S., & Neas, L. M. (2014). Mobile air monitoring data-processing strategies and effects on spatial air pollution trends. Atmos. Meas. Tech., 7(7), 2169-2183. https://doi.org/10.5194/amt-7-2169-2014
Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C. A., 3rd, Apte, J. S., Brauer, M., Cohen, A., Weichenthal, S., Coggins, J., Di, Q., Brunekreef, B., Frostad, J., Lim, S. S., Kan, H., Walker, K. D., Thurston, G. D., Hayes, R. B., . . . Spadaro, J. V. (2018). Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc Natl Acad Sci U S A, 115(38), 9592-9597. https://doi.org/10.1073/pnas.1803222115
Burnett, R., Pope, C. A., Ezzati, M., Olives, C., Lim, S. S., Mehta, S., Shin, H. H., Singh, G., Hubbell, B., Brauer, M., Anderson, H. R., Smith, K. R., Balmes, J. R., Bruce, N. G., Kan, H., Laden, F., Prüss-Ustün, A., Turner, M. C., Gapstur, S. M., . . . Cohen, A. (2014). An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure. Environmental Health Perspectives, 122(4), 397-403. https://doi.org/doi:10.1289/ehp.1307049
Cabada, J. C., Khlystov, A., Wittig, A. E., Pilinis, C., & Pandis, S. N. (2004). Light scattering by fine particles during the Pittsburgh Air Quality Study: measurements and modeling. Journal of Geophysical Research-Atmospheres, 109(D16). https://doi.org/Artn D16s03, 10.1029/2003jd004155
Caplin, A., Ghandehari, M., Lim, C., Glimcher, P., & Thurston, G. (2019). Advancing environmental exposure assessment science to benefit society. Nat Commun, 10(1), 1236. https://doi.org/10.1038/s41467-019-09155-4
Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., Broday, D., & Bartonova, A. (2017). Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ Int, 99, 293-302. https://doi.org/10.1016/j.envint.2016.12.007
Chambliss, S. E., Preble, C. V., Caubel, J. J., Cados, T., Messier, K. P., Alvarez, R. A., LaFranchi, B., Lunden, M., Marshall, J. D., Szpiro, A. A., Kirchstetter, T. W., & Apte, J. S. (2020). Comparison of Mobile and Fixed-Site Black Carbon Measurements for High-Resolution Urban Pollution Mapping. Environmental Science & Technology, 54(13), 7848-7857. https://doi.org/10.1021/acs.est.0c01409
Chen, T.-F., Chang, K.-H., & Tsai, C.-Y. (2014). Modeling direct and indirect effect of long range transport on atmospheric PM2.5 levels. Atmospheric Environment, 89, 1-9. https://doi.org/https://doi.org/10.1016/j.atmosenv.2014.01.065
Cheng, B., Ma, Y., Feng, F., Zhang, Y., Shen, J., Wang, H., Guo, Y., & Cheng, Y. (2021). Influence of weather and air pollution on concentration change of PM2.5 using a generalized additive model and gradient boosting machine. Atmospheric Environment, 255, 118437. https://doi.org/https://doi.org/10.1016/j.atmosenv.2021.118437
Cheng, F.-Y., & Hsu, C.-H. (2019). Long-term variations in PM2.5 concentrations under changing meteorological conditions in Taiwan. Scientific Reports, 9(1), 6635. https://doi.org/10.1038/s41598-019-43104-x
Cheng, Y. H., Ninh, X. H., & Yeh, S. L. (2019). Dominant Factors Influencing the Concentrations of Particulate Matters inside Train Carriages Traveling in Different Environments in the Taipei Mass Rapid Transit System. Aerosol and Air Quality Research, 19(7), 1579-1592. https://doi.org/10.4209/aaqr.2018.09.0335
Chu, Y. Y., Liu, Y. S., Li, X. Y., Liu, Z. Y., Lu, H. S., Lu, Y. A., Mao, Z. F., Chen, X., Li, N., Ren, M., Liu, F. F., Tian, L. Q., Zhu, Z. M., & Xiang, H. (2016). A Review on Predicting Ground PM2.5 Concentration Using Satellite Aerosol Optical Depth. Atmosphere, 7(10), Article 129. https://doi.org/10.3390/atmos7100129
Ciarelli, G., Colette, A., Schucht, S., Beekmann, M., Andersson, C., Manders-Groot, A., Mircea, M., Tsyro, S., Fagerli, H., Ortiz, A. G., Adani, M., Briganti, G., Cappelletti, A., D'Isidoro, M., Cuvelier, C., Couvidat, F., Meleux, F., & Bessagnet, B. (2019). Long-term health impact assessment of total PM2.5 in Europe during the 1990–2015 period. Atmospheric Environment: X, 3, 100032. https://doi.org/https://doi.org/10.1016/j.aeaoa.2019.100032
Correia, C., Martins, V., Cunha-Lopes, I., Faria, T., Diapouli, E., Eleftheriadis, K., & Almeida, S. (2020). Particle exposure and inhaled dose while commuting in Lisbon. Environmental Pollution, 257, 113547. https://www.sciencedirect.com/science/article/pii/S0269749119347001?via%3Dihub
Dias, D., & Tchepel, O. (2018). Spatial and Temporal Dynamics in Air Pollution Exposure Assessment. International Journal of Environmental Research and Public Health, 15(3), Article 558. https://doi.org/10.3390/ijerph15030558
Donkelaar, A. v., Martin, R. V., Brauer, M., Kahn, R., Levy, R., Verduzco, C., & Villeneuve, P. J. (2010). Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application. Environmental Health Perspectives, 118(6), 847-855. https://doi.org/doi:10.1289/ehp.0901623
Dröge, J., Müller, R., Scutaru, C., Braun, M., & Groneberg, D. A. (2018). Mobile Measurements of Particulate Matter in a Car Cabin: Local Variations, Contrasting Data from Mobile versus Stationary Measurements and the Effect of an Opened versus a Closed Window. International Journal of Environmental Research and Public Health, 15(12), 2642. https://doi.org/https://doi.org/10.3390/ijerph15122642
Environmental Protection Agency, U. S. (2019). Integrated Science Assessment (ISA) for Particulate Matter (Final Report, Dec 2019). Washington, DC. EPA/600/R-19/188. Retrieved 15 May 2021 from https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=347534
Environmental Protection Agency, U. S. (2021, Mar. 2 2021). Air Sensor Toolbox. Retrieved 2 March 2021 from https://www.epa.gov/air-sensor-toolbox
Environmental Protection Agency, U. S. (2022). EPA scientists develop and evaluate Federal Reference & Equivalent Methods for measuring key air pollutants. Retrieved 1 September 2019 from https://www.epa.gov/air-research/epa-scientists-develop-and-evaluate-federal-reference-equivalent-methods-measuring-key
Forouzanfar, M. H., Afshin, A., Alexander, L. T., Anderson, H. R., Bhutta, Z. A., Biryukov, S., Brauer, M., Burnett, R., Cercy, K., & Charlson, F. J. (2016). Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The lancet, 388(10053), 1659-1724. https://doi.org/10.1016/S0140-6736(16)31679-8
Fuller, R., Landrigan, P. J., Balakrishnan, K., Bathan, G., Bose-O'Reilly, S., Brauer, M., Caravanos, J., Chiles, T., Cohen, A., & Corra, L. (2022). Pollution and health: a progress update. The Lancet Planetary Health. https://doi.org/10.1016/S2542-5196(22)00090-0
Guo, H., Gu, X., Ma, G., Shi, S., Wang, W., Zuo, X., & Zhang, X. (2019). Spatial and temporal variations of air quality and six air pollutants in China during 2015-2017. Sci Rep, 9(1), 15201. https://doi.org/10.1038/s41598-019-50655-6
Ham, W., Vijayan, A., Schulte, N., & Herner, J. D. (2017). Commuter exposure to PM2. 5, BC, and UFP in six common transport microenvironments in Sacramento, California. Atmospheric Environment, 167, 335-345.
Han, D., Gao, S., Fu, Q., Cheng, J., Chen, X., Xu, H., Liang, S., Zhou, Y., & Ma, Y. (2018). Do volatile organic compounds (VOCs) emitted from petrochemical industries affect regional PM2.5? Atmospheric Research, 209, 123-130. https://doi.org/https://doi.org/10.1016/j.atmosres.2018.04.002
Hankey, S., & Marshall, J. D. (2015). Land Use Regression Models of On-Road Particulate Air Pollution (Particle Number, Black Carbon, PM2.5, Particle Size) Using Mobile Monitoring. Environmental Science & Technology, 49(15), 9194-9202. https://doi.org/10.1021/acs.est.5b01209
Hankey, S., & Marshall, J. D. (2015). On-bicycle exposure to particulate air pollution: Particle number, black carbon, PM2.5, and particle size. Atmospheric Environment, 122, 65-73. https://doi.org/10.1016/j.atmosenv.2015.09.025
Harris-Roxas, B., Viliani, F., Bond, A., Cave, B., Divall, M., Furu, P., Harris, P., Soeberg, M., Wernham, A., & Winkler, M. (2012). Health impact assessment: the state of the art. Impact Assessment and Project Appraisal, 30(1), 43-52. https://doi.org/10.1080/14615517.2012.666035
Ho, C. C., Chen, L. J., & Hwang, J. S. (2020). Estimating ground-level PM2.5 levels in Taiwan using data from air quality monitoring stations and high coverage of microsensors. Environmental Pollution, 264, Article 114810. https://doi.org/10.1016/j.envpol.2020.114810
Ho, M.-S., Lin, M.-Y., Wang, J.-D., Young, L.-H., Hsu, H.-T., Hwang, B.-F., & Tsai, P.-J. (2022). An Integrated Approach to Characterize Temporal–Spatial Variations in PM2.5 Concentrations at the Ground Level and Its Implication on Health Impact Assessments [Original Research]. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.901754
Huang, B., Liu, M., Ren, Z., Bi, X., Zhang, G., Sheng, G., & Fu, J. (2013). Chemical composition, diurnal variation and sources of PM2.5 at two industrial sites of South China. Atmospheric Pollution Research, 4(3), 298-305. https://doi.org/https://doi.org/10.5094/APR.2013.033
Huang, C.-C., Chen, B.-Y., Pan, S.-C., Ho, Y.-I., & Guo, Y. L. (2019). Prenatal exposure to PM2.5 and Congenital Heart Diseases in Taiwan. Science of the Total Environment, 655, 880-886. https://doi.org/10.1016/j.scitotenv.2018.11.284
Hussein, T., Saleh, S. S. A., dos Santos, V. N., Abdullah, H., & Boor, B. E. (2019). Black Carbon and Particulate Matter Concentrations in Eastern Mediterranean Urban Conditions: An Assessment Based on Integrated Stationary and Mobile Observations. Atmosphere, 10(6), Article 323. https://doi.org/10.3390/atmos10060323
IARC. (2013). Air Pollution and cancer (IARC Scientific Publication No. 161). Lyon (FR): International Agency for Research on Cancer. Retrieved 12 Jun 2020 from https://publications.iarc.fr/Book-And-Report-Series/Iarc-Scientific-Publications/Air-Pollution-And-Cancer-2013
Jahn, H. J., Kraemer, A., Chen, X.-C., Chan, C.-Y., Engling, G., & Ward, T. J. (2013). Ambient and personal PM2.5 exposure assessment in the Chinese megacity of Guangzhou. Atmospheric Environment, 74, 402-411. https://doi.org/https://doi.org/10.1016/j.atmosenv.2013.04.011
Kumar, P., & Goel, A. (2016). Concentration dynamics of coarse and fine particulate matter at and around signalised traffic intersections. Environmental Science-Processes & Impacts, 18(9), 1220-1235. https://doi.org/10.1039/c6em00215c
Lee, M., Lin, L., Chen, C.-Y., Tsao, Y., Yao, T.-H., Fei, M.-H., & Fang, S.-H. (2020). Forecasting Air Quality in Taiwan by Using Machine Learning. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-61151-7
Li, J., Zhang, H., Chao, C.-Y., Chien, C.-H., Wu, C.-Y., Luo, C. H., Chen, L.-J., & Biswas, P. (2020). Integrating low-cost air quality sensor networks with fixed and satellite monitoring systems to study ground-level PM2.5. Atmospheric Environment, 223, 117293. https://doi.org/https://doi.org/10.1016/j.atmosenv.2020.117293
Li, J. Y., Mattewal, S. K., Patel, S., & Biswas, P. (2020). Evaluation of Nine Low-cost-sensor-based Particulate Matter Monitors. Aerosol and Air Quality Research, 20(2), 254-270. https://doi.org/10.4209/aaqr.2018.12.0485
Li, Z. Y., Fung, J. C. H., & Lau, A. K. H. (2018). High spatiotemporal characterization of on-road PM2.5 concentrations in high-density urban areas using mobile monitoring. Building and Environment, 143, 196-205. https://doi.org/10.1016/j.buildenv.2018.07.014
Lin, M. Y., Guo, Y. X., Chen, Y. C., Chen, W. T., Young, L. H., Lee, K. J., Wu, Z. Y., & Tsai, P. J. (2018). An instantaneous spatiotemporal model for predicting traffic-related ultrafine particle concentration through mobile noise measurements. Sci Total Environ, 636, 1139-1148. https://doi.org/10.1016/j.scitotenv.2018.04.248
Lin, Y.-C., Chi, W.-J., & Lin, Y.-Q. (2020). The improvement of spatial-temporal resolution of PM2.5 estimation based on micro-air quality sensors by using data fusion technique. Environment International, 134, 105305. https://doi.org/https://doi.org/10.1016/j.envint.2019.105305
Lu, H.-Y., Wu, Y.-L., Mutuku, J. K., & Chang, K.-H. (2019). Various sources of PM2. 5 and their impact on the air quality in Tainan City, Taiwan. Aerosol and Air Quality Research, 19(3), 601-619.
Luo, G., Zhang, L., Hu, X., & Qiu, R. (2020). Quantifying public health benefits of PM2.5 reduction and spatial distribution analysis in China. Science of the Total Environment, 719, 137445. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.137445
Ma, Z., Hu, X., Sayer, A. M., Levy, R., Zhang, Q., Xue, Y., Tong, S., Bi, J., Huang, L., & Liu, Y. (2016). Satellite-Based Spatiotemporal Trends in PM2.5 Concentrations: China, 2004-2013. Environ Health Perspect, 124(2), 184-192. https://doi.org/10.1289/ehp.1409481
Mazaheri, M., Clifford, S., Yeganeh, B., Viana, M., Rizza, V., Flament, R., Buonanno, G., & Morawska, L. (2018). Investigations into factors affecting personal exposure to particles in urban microenvironments using low-cost sensors. Environment International, 120, 496-504. https://www.sciencedirect.com/science/article/pii/S0160412018301934?via%3Dihub
Messier, K. P., Chambliss, S. E., Gani, S., Alvarez, R., Brauer, M., Choi, J. J., Hamburg, S. P., Kerckhoffs, J., LaFranchi, B., Lunden, M. M., Marshall, J. D., Portier, C. J., Roy, A., Szpiro, A. A., Vermeulen, R. C. H., & Apte, J. S. (2018). Mapping Air Pollution with Google Street View Cars: Efficient Approaches with Mobile Monitoring and Land Use Regression. Environmental Science & Technology, 52(21), 12563-12572. https://doi.org/10.1021/acs.est.8b03395
Miri, M., Ghassoun, Y., Dovlatabadi, A., Ebrahimnejad, A., & Lowner, M. O. (2019). Estimate annual and seasonal PM1, PM2.5 and PM10 concentrations using land use regression model [Article]. Ecotoxicology and Environmental Safety, 174, 137-145. https://doi.org/10.1016/j.ecoenv.2019.02.070
MODA. (2022). Government open data, Taiwan. Ministry of Digital Affairs, Taiwan. Retrieved 1 May 2022 from https://data.gov.tw/
MOENV. (2020, 2023-09-27). Environmental Project's Achivements Reports Query System. Ministry of Environment. https://reurl.cc/RyO8g6
MOENV. (2021, 2021-04-30). Environmental Project's Achivements Reports Query System. Ministry of Environment. https://reurl.cc/V4Ro6b
MOENV. (2022a, 2022-12). Environmental Project's Achivements Reports Query System. Ministry of Environment. https://reurl.cc/jvRmvM
MOENV. (2022b, 2022-10-14). Environmental Project's Achivements Reports Query System. Ministry of Environment. https://reurl.cc/z6rOe6
MOENV. (2022c). Manual monitoring of fine particulate matter. Ministry of Environment. Retrieved 2 December 2022 from https://airtw.epa.gov.tw/ENG/EnvMonitoring/Central/spm.aspx
MOENV. (2022d). Taiwan Air Quality Historical Monitoring Data. Ministry of Environment. Retrieved 2 December 2022 from https://airtw.epa.gov.tw/CHT/Query/His_Data.aspx
MOENV. (2023a, 2023-09-28). Air Quality Monitoring Report. Ministry of Environment. https://www.moenv.gov.tw/Page/686030BBD5DFC8DD
MOENV. (2023b, 2023-09-27). Environmental Project's Achivements Reports Query System. Ministry of Environment.
MOENV. (2023c, 2023-01). Environmental Project's Achivements Reports Query System. Ministry of Environment. https://reurl.cc/5O88kV
MOHW. (2023). Cause of death statistics. Ministry of Health and Welfare. Retrieved 2024-06-04 from https://dep.mohw.gov.tw/DOS/lp-5069-113-xCat-y110.html
MOI. (2022, 2023-05-18). Monthly Bulletin of Interior Statistics, Taiwan. Ministry of the Interior, R.O.C. (Taiwan). Retrieved 3 February 2023 from https://www.moi.gov.tw/cl.aspx?n=4412
Monrad, M., Sajadieh, A., Christensen, J. S., Ketzel, M., Raaschou-Nielsen, O., Tjonneland, A., Overvad, K., Loft, S., & Sorensen, M. (2017). Long-Term Exposure to Traffic-Related Air Pollution and Risk of Incident Atrial Fibrillation: A Cohort Study [traffic & atrial fabrillation]. Environ Health Perspect, 125(3), 422-427. https://doi.org/10.1289/EHP392
Morawska, L., Thai, P. K., Liu, X., Asumadu-Sakyi, A., Ayoko, G., Bartonova, A., Bedini, A., Chai, F., Christensen, B., Dunbabin, M., Gao, J., Hagler, G. S. W., Jayaratne, R., Kumar, P., Lau, A. K. H., Louie, P. K. K., Mazaheri, M., Ning, Z., Motta, N., . . . Williams, R. (2018). Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environ Int, 116, 286-299. https://doi.org/10.1016/j.envint.2018.04.018
Mustafic, H., Jabre, P., Caussin, C., Murad, M. H., Escolano, S., Tafflet, M., Perier, M. C., Marijon, E., Vernerey, D., Empana, J. P., & Jouven, X. (2012). Main air pollutants and myocardial infarction: a systematic review and meta-analysis. JAMA, 307(7), 713-721. https://doi.org/10.1001/jama.2012.126
Okokon, E. O., Yli-Tuomi, T., Turunen, A. W., Taimisto, P., Pennanen, A., Vouitsis, I., Samaras, Z., Voogt, M., Keuken, M., & Lanki, T. (2017). Particulates and noise exposure during bicycle, bus and car commuting: A study in three European cities. Environ Res, 154, 181-189. https://doi.org/10.1016/j.envres.2016.12.012
Onat, B., Alver Şahin, Ü., Uzun, B., Akın, Ö., Özkaya, F., & Ayvaz, C. (2019). Commuter Exposure to Black Carbon, Fine Particulate Matter and Particle Number Concentration in Ferry and at the Pier in Istanbul. Atmosphere, 10(8), 439.
Ostro, B. (2004). Outdoor air pollution: assessing the environmental burden of disease at national and local levels. World Health Organization. Retrieved 15 May 2022 from https://www.who.int/publications/i/item/9241591463
Pan, L., Xu, J., Tie, X., Mao, X., Gao, W., & Chang, L. (2019). Long-term measurements of planetary boundary layer height and interactions with PM2.5 in Shanghai, China. Atmospheric Pollution Research, 10(3), 989-996. https://doi.org/https://doi.org/10.1016/j.apr.2019.01.007
Patil, I. (2021). Visualizations with statistical details: The'ggstatsplot'approach. Journal of Open Source Software, 6(61), 3167. https://doi.org/https://doi.org/10.21105/joss.03167
Piotrowicz, A., & Polednik, B. (2019). Exposure to Aerosols Particles on an Urban Road. Journal of Ecological Engineering, 20(5), 27-34. https://doi.org/10.12911/22998993/105329
Qiu, Z. W., Wang, W. Z., Zheng, J. L., & Lv, H. T. (2019). Exposure assessment of cyclists to UFP and PM on urban routes in Xi'an, China. Environmental Pollution, 250, 241-250. https://doi.org/10.1016/j.envpol.2019.03.129
R. (2021). R: A Language and Environment for Statistical Computing, Vienna, Austria. R Foundation for Statistical Computing. Retrieved 10 Jun 2021 from https://www.R-project.org
Ramos, C. A., Silva, J. R., Faria, T., Wolterbeek, T. H., & Almeida, S. M. (2017). Exposure assessment of a cyclist to particles and chemical elements. Environmental Science and Pollution Research, 24(13), 11879-11889. https://doi.org/10.1007/s11356-016-6365-2
Rittner, R., Gustafsson, S., Spanne, M., & Malmqvist, E. (2020). Particle concentrations, dispersion modelling and evaluation in southern Sweden [Article]. Sn Applied Sciences, 2(6), 15, Article 1013. https://doi.org/10.1007/s42452-020-2769-1
Saraswat, A., Apte, J. S., Kandlikar, M., Brauer, M., Henderson, S. B., & Marshall, J. D. (2013). Spatiotemporal land use regression models of fine, ultrafine, and black carbon particulate matter in New Delhi, India. Environ Sci Technol, 47(22), 12903-12911. https://doi.org/10.1021/es401489h
Shen, J., & Gao, Z. (2019). Commuter exposure to particulate matters in four common transportation modes in Nanjing. Building and Environment, 156, 156-170.
Shi, T., Hu, Y., Liu, M., Li, C., Zhang, C., & Liu, C. (2020). Land use regression modelling of PM2.5 spatial variations in different seasons in urban areas. Science of the Total Environment, 743, 140744. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.140744
Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D., Williams, R. W., Hagler, G. S., Shelow, D., Hindin, D. A., Kilaru, V. J., & Preuss, P. W. (2013). The changing paradigm of air pollution monitoring. Environ Sci Technol, 47(20), 11369-11377. https://doi.org/10.1021/es4022602
Song, C. B., Wu, L., Xie, Y. C., He, J. J., Chen, X., Wang, T., Lin, Y. C., Jin, T. S., Wang, A. X., Liu, Y., Dai, Q. L., Liu, B. S., Wang, Y. N., & Mao, H. J. (2017). Air pollution in China: Status and spatiotemporal variations. Environmental Pollution, 227, 334-347. https://doi.org/10.1016/j.envpol.2017.04.075
Srivastava, N. (2020). Association of modeled PM2.5 with aerosol optical depth: model versus satellite [Article]. Natural Hazards, 102(2), 689-705. https://doi.org/10.1007/s11069-019-03590-8
Sun, X., Luo, X.-S., Xu, J., Zhao, Z., Chen, Y., Wu, L., Chen, Q., & Zhang, D. (2019). Spatio-temporal variations and factors of a provincial PM2.5 pollution in eastern China during 2013–2017 by geostatistics. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-40426-8
Thongthammachart, T., Araki, S., Shimadera, H., Matsuo, T., & Kondo, A. (2022). Incorporating Light Gradient Boosting Machine to land use regression model for estimating NO2 and PM2.5 levels in Kansai region, Japan. Environmental Modelling & Software, 155, 105447. https://doi.org/https://doi.org/10.1016/j.envsoft.2022.105447
Tsai, Y. I., Sopajaree, K., Kuo, S.-C., & Yu, S.-P. (2015). Potential PM2.5 impacts of festival-related burning and other inputs on air quality in an urban area of southern Taiwan. Science of The Total Environment, 527-528, 65-79. https://doi.org/https://doi.org/10.1016/j.scitotenv.2015.04.021
TSI. (2013, 2020). Rationale for Programming: A PCF of 0.38 for Ambient Monitoring (EXPMN-007) A4. TSI Incorporated. Retrieved 18 May 2020 from https://www.tsi.com/products/aerosol-and-dust-monitors/dust-monitors/dusttrak-ii-aerosol-monitor-8530/
Van den Bossche, J., Peters, J., Verwaeren, J., Botteldooren, D., Theunis, J., & De Baets, B. (2015). Mobile monitoring for mapping spatial variation in urban air quality: Development and validation of a methodology based on an extensive dataset. Atmospheric Environment, 105, 148-161. https://doi.org/https://doi.org/10.1016/j.atmosenv.2015.01.017
van Donkelaar, A., Martin, R. V., Spurr, R. J. D., & Burnett, R. T. (2015). High-Resolution Satellite-Derived PM2.5 from Optimal Estimation and Geographically Weighted Regression over North America [Article]. Environmental Science & Technology, 49(17), 10482-10491. https://doi.org/10.1021/acs.est.5b02076
Velasco, E., Retama, A., Segovia, E., & Ramos, R. (2019). Particle exposure and inhaled dose while commuting by public transport in Mexico City. Atmospheric Environment, 219, 117044.
Vlaanderen, J., Portengen, L., Chadeau-Hyam, M., Szpiro, A., Gehring, U., Brunekreef, B., Hoek, G., & Vermeulen, R. (2019). Error in air pollution exposure model determinants and bias in health estimates. Journal of Exposure Science & Environmental Epidemiology, 29(2), 258-266. https://doi.org/10.1038/s41370-018-0045-x
Wang, L., Liu, Z., Sun, Y., Ji, D., & Wang, Y. (2015). Long-range transport and regional sources of PM2.5 in Beijing based on long-term observations from 2005 to 2010. Atmospheric Research, 157, 37-48. https://doi.org/https://doi.org/10.1016/j.atmosres.2014.12.003
Wei, W., Chen, S., Wang, Y., Cheng, L., Wang, X., & Cheng, S. (2022). The impacts of VOCs on PM2.5 increasing via their chemical losses estimates: A case study in a typical industrial city of China. Atmospheric Environment, 273, 118978. https://doi.org/https://doi.org/10.1016/j.atmosenv.2022.118978
WHO. (2012). Sustainable Development Goals target 11.6. UN Sustainable Development Solutions Network. Retrieved 2 May 2021 from https://indicators.report/targets/11-6/
WHO. (2021). WHO global air quality guidelines: particulate matter (PM2. 5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide: executive summary. https://www.who.int/publications/i/item/9789240034228
WHO. (2023, 2023-05-15). WHO Ambient Air quality database. WHO. Retrieved 2 July 2022 from https://www.who.int/data/gho/data/themes/air-pollution/who-air-quality-database
Williams, R., Duvall, R., Kilaru, V., Hagler, G., Hassinger, L., Benedict, K., Rice, J., Kaufman, A., Judge, R., Pierce, G., Allen, G., Bergin, M., Cohen, R. C., Fransioli, P., Gerboles, M., Habre, R., Hannigan, M., Jack, D., Louie, P., . . . Ning, Z. (2019). Deliberating performance targets workshop: Potential paths for emerging PM2.5 and O3 air sensor progress. Atmos Environ X, 2, 100031. https://doi.org/10.1016/j.aeaoa.2019.100031
Wong, P.-Y., Lee, H.-Y., Chen, Y.-C., Zeng, Y.-T., Chern, Y.-R., Chen, N.-T., Lung, S.-C. C., Su, H.-J., & Wu, C.-D. (2021). Using a land use regression model with machine learning to estimate ground level PM2. 5. Environmental Pollution, 277, 116846. https://doi.org/https://doi.org/10.1016/j.envpol.2021.116846
Wu, C.-D., Chen, Y.-C., Pan, W.-C., Zeng, Y.-T., Chen, M.-J., Guo, Y. L., & Lung, S.-C. C. (2017). Land-use regression with long-term satellite-based greenness index and culture-specific sources to model PM2.5 spatial-temporal variability. Environmental Pollution, 224, 148-157. https://doi.org/https://doi.org/10.1016/j.envpol.2017.01.074
Wu, C.-D., Zeng, Y.-T., & Lung, S.-C. C. (2018). A hybrid kriging/land-use regression model to assess PM2.5 spatial-temporal variability. Science of the Total Environment, 645, 1456-1464. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.07.073
Xu, H., Bechle, M. J., Wang, M., Szpiro, A. A., Vedal, S., Bai, Y., & Marshall, J. D. (2019). National PM2.5 and NO2 exposure models for China based on land use regression, satellite measurements, and universal kriging. Science of the Total Environment, 655, 423-433. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.11.125
Xu, X. Y., Qin, N., Yang, Z. C., Liu, Y. W., Cao, S. Z., Zou, B., Jin, L., Zhang, Y. W., & Duan, X. L. (2021). Potential for developing independent daytime/nighttime LUR models based on short-term mobile monitoring to improve model performance. Environmental Pollution, 268, Article 115951. https://doi.org/10.1016/j.envpol.2020.115951
Yan, C., Zheng, M., Yang, Q., Zhang, Q., Qiu, X., Zhang, Y., Fu, H., Li, X., Zhu, T., & Zhu, Y. (2015). Commuter exposure to particulate matter and particle-bound PAHs in three transportation modes in Beijing, China. Environmental Pollution, 204, 199-206. https://www.sciencedirect.com/science/article/pii/S0269749115002171?via%3Dihub
Yang, X., Xiao, D., Bai, H., Tang, J., & Wang, W. (2022). Spatiotemporal Distributions of PM2.5 Concentrations in the Beijing–Tianjin–Hebei Region From 2013 to 2020 [Original Research]. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.842237
Yanosky, J. D., Williams, P. L., & MacIntosh, D. L. (2002). A comparison of two direct-reading aerosol monitors with the federal reference method for PM2.5 in indoor air. Atmospheric Environment, 36(1), 107-113. https://doi.org/https://doi.org/10.1016/S1352-2310(01)00422-8
Ye, W. F., Ma, Z. Y., & Ha, X. Z. (2018). Spatial-temporal patterns of PM2.5 concentrations for 338 Chinese cities. Science of the Total Environment, 631-632, 524-533. https://doi.org/10.1016/j.scitotenv.2018.03.057
Yousefian, F., Faridi, S., Azimi, F., Aghaei, M., Shamsipour, M., Yaghmaeian, K., & Hassanvand, M. S. (2020). Temporal variations of ambient air pollutants and meteorological influences on their concentrations in Tehran during 2012-2017. Sci Rep, 10(1), 292. https://doi.org/10.1038/s41598-019-56578-6
Yu, H. F., Russell, A., Mulholland, J., Odman, T., Hu, Y. T., Chang, H. H., & Kumar, N. (2018). Cross-comparison and evaluation of air pollution field estimation methods. Atmospheric Environment, 179, 49-60. https://doi.org/10.1016/j.atmosenv.2018.01.045
Zamora, M. L., Rice, J., & Koehler, K. (2020). One Year Evaluation of Three Low-Cost PM2.5 Monitors. Atmospheric Environment, 235, 117615. https://doi.org/10.1016/j.atmosenv.2020.117615
Zhang, N., Huang, H., Duan, X., Zhao, J., & Su, B. (2018). Quantitative association analysis between PM2.5 concentration and factors on industry, energy, agriculture, and transportation. Sci Rep, 8(1), 9461. https://doi.org/10.1038/s41598-018-27771-w
Zhou, Y., Yue, Y., Bai, Y., & Zhang, L. (2020). Effects of Rainfall on PM2.5 and PM10 in the Middle Reaches of the Yangtze River. Advances in Meteorology, 2398146. https://doi.org/https://doi.org/10.1155/2020/2398146