簡易檢索 / 詳目顯示

研究生: 陳羿樺
Chen, Yi-Hua
論文名稱: 利用半導體雷射非線性動態進行光電式微波混頻之模擬研究
Simulation study of photonic microwave mixing using nonlinear period-one dynamics of semiconductor lasers
指導教授: 黃勝廣
Hwang, Sheng-Kwang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 64
中文關鍵詞: 半導體雷射週期一動態微波頻率轉換效率
外文關鍵詞: semiconductor laser, period-one dynamics, microwave frequency, conversion gain
相關次數: 點閱:131下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文是利用光注入半導體雷射產生非線性週期一動態,並利用此動態進行光電式微波混頻系統的研究,本系統只要一個半導體雷射作為主要元件。由於週期一動態具有小的線寬、頻率可調性高,可以做為一個高品質光電式微波訊號源。本系統不需要額外的電子式微波產生器以及光電轉換器作為微波訊號源,且可因而改善無線通訊與光纖通訊整合系統的架構成本與能量轉換效率。
    為了探討雷射操作條件產生週期一動態的共振邊帶與外部調制產生的調制邊帶在系統中的重要性;本論文會在第三章討論微波頻率降頻,當一載有微波之光訊號注入雷射時,其光載波激發此雷射產生週期一動態,由於週期一動態之共振頻率與調制頻率不相同,且週期一動態不被調制頻率穩定鎖住,因而達成混頻,混頻後能得到調制頻率與共振頻率的差值,在系統輸出端得到較為低頻的微波頻率,最佳轉換效率約為15 dB。
    第四章則討論微波頻率升頻,一載有微波之光訊號注入雷射,其光載波激發此雷射產生週期一動態,藉由週期一動態產生超高頻共振頻率,可得調制頻率與共振頻率的差值,由於共振頻率遠大於調頻率,在系統輸出端得到高頻的微波頻率。藉由本系統可以得到微波頻率由數GHz到數十GHz,且具約有10 dB轉換效率。
    在降頻中,不同雷射操作條件產生的週期一動態具有不同的共振頻率與邊帶強度,根據研究,低光注入強度或高主副雷射頻率差具有較強的共振邊帶,因此與調制邊帶混頻後能獲得較低的微波頻率與較好的轉效率;在升頻中,由於共振邊帶與調制邊帶兩者距離太遠,可以維持系統混頻後的轉換效率。

    The purpose of this thesis is simulation study of photonic microwave mixing using nonlinear period-one dynamics of an optically injected semiconductor lasers. However, the semiconductor laser is operated at period-one dynamics, it provides a local oscillator frequency and executes photonic microwave mixing. Our system can detect up or down microwave signal with photonic microwave mixing. We demonstrate that by utilizing a modest over 50 GHz semiconductor laser which is operated at period-one dynamics state, the injected laser can generate the local oscillator frequency down to 5 GHz with high conversion efficiency about 10 dB. In this study, we also simulate the laser with 10 GHz modulation, which achieves 50 GHz microwave of output.

    摘要 i ABSTRACT ii 誌謝 viii 目錄 ix 圖目錄 xi 第一章 前言 1 1.1 研究背景 1 1.2 研究動機 3 1.3 論文架構 6 第二章 半導體雷射動態之非線性動態系統 7 2.1 基本雷射原理與理論模型 7 2.2 靜態分析模型 10 2.3 非線性動態分析 12 2.4 動態模型分析 20 第三章 週期一動態之微波混頻之分析 22 3.1 實驗架構 22 3.2 操作條件對於微波降頻效率分析 25 3.3 以地圖分析所得微波頻率與轉換效率 35 3.4 固定振盪頻率f_o分析其轉換頻率之效率 36 3.5 固定振盪頻率f_o分析其轉換頻率之微波轉換效率 39 3.6 調制頻率與振盪頻率關係之分析 41 3.7 固定調制頻率分析混頻後所得微波頻率 44 3.8 固定調制頻率分析混頻後轉換效率 45 第四章 利用週期一動態微波混頻產生高頻微波之分析 46 4.1 實驗架構 46 4.2 雷射操作條件對於微波升頻分析 48 4.3 雷射外部調制條件對於微波升頻分析 52 4.4 固定調制頻率分析混頻後所得微波頻率 55 4.5 固定調制頻率分析混頻後轉換效率 57 第五章 結論與未來展望 58 參考文獻 60

    [1] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015–2020.
    [2] Sun, C. K., R. J. Orazi, and S. A. Pappert. "Efficient microwave frequency conversion using photonic link signal mixing." IEEE Photonics Technology Letters 8.1 (1996): 154-156.
    [3] Helkey, Roger, Jon C. Twichell, and C. COX III. "A down-conversion optical link with RF gain." Journal of lightwave technology 15.6 (1997): 956-961.
    [4] Gallo, John T., K. D. Breuer, and Jerry B. Wood. "Millimeter-wave frequency converting fiber optic link modeling and results." Optical Science, Engineering and Instrumentation'97. International Society for Optics and Photonics, 1997.
    [5] Gallo, John T., K. D. Breuer, and Jerry B. Wood. "Millimeter-wave frequency converting fiber optic link modeling and results." Optical Science, Engineering and Instrumentation'97. International Society for Optics and Photonics, 1997.
    [6] Pagán, Vincent R., Bryan M. Haas, and T. E. Murphy. "Linearized electrooptic microwave downconversion using phase modulation and optical filtering."Optics express 19.2 (2011): 883-895.
    [7] Chan, Erwin HW, and Robert A. Minasian. "Microwave photonic downconverter with high conversion efficiency." Journal of Lightwave Technology 30.23 (2012): 3580-3585.
    [8] Gallo, John T., K. D. Breuer, and Jerry B. Wood. "Millimeter-wave frequency converting fiber optic link modeling and results." Optical Science, Engineering and Instrumentation'97. International Society for Optics and Photonics, 1997.
    [9] Chan, Erwin HW, and Robert A. Minasian. "High conversion efficiency microwave photonic mixer based on stimulated Brillouin scattering carrier suppression technique." Optics letters 38.24 (2013): 5292-5295.
    [10] Song, Ho-Jin, and Jong-In Song. "Simultaneous all-optical frequency downconversion technique utilizing an SOA-MZI for WDM radio over fiber (RoF) applications." Journal of lightwave technology 24.8 (2006): 3028-3034.
    [11] Bohémond, Christian, Thierry Rampone, and Ammar Sharaiha. "Performances of a photonic microwave mixer based on cross-gain modulation in a semiconductor optical amplifier." Journal of Lightwave Technology 29.16 (2011): 2402-2409.
    [12] Liu, Jia-Ming, How-Foo Chen, and Shuo Tang. "Dynamics and synchronization of semiconductor lasers for chaotic optical communications." Digital Communications Using Chaos and Nonlinear Dynamics. Springer New York, 2006. 285-340.
    [13] Simpson, T. B., et al. "Nonlinear dynamics induced by external optical injection in semiconductor lasers." Quantum and Semiclassical Optics: Journal of the European Optical Society Part B 9.5 (1997): 765.
    [14] Chan, Sze-Chun, Sheng-Kwang Hwang, and Jia-Ming Liu. "Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser." Optics express 15.22 (2007): 14921-14935..
    [15] Chan, Sze-Chun, Sheng-Kwang Hwang, and Jia-Ming Liu. "Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser." Optics express 15.22 (2007): 14921-14935..
    [16] Simpson, T. B., et al. "Period‐doubling route to chaos in a semiconductor laser subject to optical injection." Applied Physics Letters 64.26 (1994): 3539-3541.
    [17] Simpson, T. B., et al. "Period-doubling cascades and chaos in a semiconductor laser with optical injection." Physical review A 51.5 (1995): 4181
    [18] Hwang, Sheng-Kwang, How-Foo Chen, and Che-Yang Lin. "All-optical frequency conversion using nonlinear dynamics of semiconductor lasers."Optics letters 34.6 (2009): 812-814.
    [19] Hung, Yu-Han, Cheng-Hao Chu, and Sheng-Kwang Hwang. "Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links."Optics letters 38.9 (2013): 1482-1484.
    [20] Hung, Yu-Han, and Sheng-Kwang Hwang. "Photonic microwave amplification for radio-over-fiber links using period-one nonlinear dynamics of semiconductor lasers." Optics letters 38.17 (2013): 3355-3358.
    [21] Chan, Sze-Chun, Sheng-Kwang Hwang, and Jia-Ming Liu. "Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser."Optics letters 31.15 (2006): 2254-2256.
    [22] Simpson, T. B., and J. M. Liu. "Enhanced modulation bandwidth in injection-locked semiconductor lasers." IEEE Photonics Technology Letters 9.10 (1997): 1322-1324.
    [23] Hwang, S. K., J. M. Liu, and J. K. White. "35-GHz intrinsic bandwidth for direct modulation in 1.3-μm semiconductor lasers subject to strong injection locking."IEEE Photonics Technology Letters 16.4 (2004): 972-974.
    [24] Liu, J. M., et al. "Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking." IEEE Photonics Technology Letters9.10 (1997): 1325-1327.
    [25] Liu, Jia-ming, How-Foo Chen, and Shuo Tang. "Synchronized chaotic optical communications at high bit rates." IEEE journal of quantum electronics 38.9 (2002): 1184-1196.
    [26] Lo, Kai-Hung, Sheng-Kwang Hwang, and Silvano Donati. "Optical feedback stabilization of photonic microwave generation using period-one nonlinear dynamics of semiconductor lasers." Optics express 22.15 (2014): 18648-18661.
    [27] Lin, F. Y., and J. M. Liu. "Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback." Optics communications 221.1 (2003): 173-180.

    下載圖示 校內:2021-09-06公開
    校外:2021-09-06公開
    QR CODE