| 研究生: |
呂祖皜 Lu, Tsu-Hau |
|---|---|
| 論文名稱: |
以DNA報導系統探討日本腦炎病毒RNA元件對轉譯的調控 Utilizing a DNA-based reporter system to investigate how RNA elements within Japanese encephalitis virus regulate translation |
| 指導教授: |
余佳益
Yu, Chia-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 黃病毒RNA元件 、RNA轉譯 、DNA報導系統 、日本腦炎病毒 |
| 外文關鍵詞: | Flavivirus RNA elements, RNA translation, DNA reporter system, Japanese encephalitis virus |
| 相關次數: | 點閱:99 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Galloway, A. and V.H. Cowling, mRNA cap regulation in mammalian cell function and fate. Biochim Biophys Acta Gene Regul Mech, 2019. 1862(3): p. 270-279.
2. Merrick, W.C. and G.D. Pavitt, Protein Synthesis Initiation in Eukaryotic Cells. Cold Spring Harb Perspect Biol, 2018. 10(12).
3. Shah, P., et al., Rate-limiting steps in yeast protein translation. Cell, 2013. 153(7): p. 1589-601.
4. Sharma, A.K., et al., A chemical kinetic basis for measuring translation initiation and elongation rates from ribosome profiling data. PLoS Comput Biol, 2019. 15(5): p. e1007070.
5. Kahvejian, A., G. Roy, and N. Sonenberg, The mRNA closed-loop model: the function of PABP and PABP-interacting proteins in mRNA translation. Cold Spring Harb Symp Quant Biol, 2001. 66: p. 293-300.
6. Alekhina, O.M., et al., Functional Cyclization of Eukaryotic mRNAs. Int J Mol Sci, 2020. 21(5).
7. Mignone, F., et al., Untranslated regions of mRNAs. Genome Biol, 2002. 3(3): p. Reviews0004.
8. Hernández, G., M. Altmann, and P. Lasko, Origins and evolution of the mechanisms regulating translation initiation in eukaryotes. Trends Biochem Sci, 2010. 35(2): p. 63-73.
9. Lee, A.S., P.J. Kranzusch, and J.H. Cate, eIF3 targets cell-proliferation messenger RNAs for translational activation or repression. Nature, 2015. 522(7554): p. 111-4.
10. Pelletier, J. and N. Sonenberg, Insertion mutagenesis to increase secondary structure within the 5' noncoding region of a eukaryotic mRNA reduces translational efficiency. Cell, 1985. 40(3): p. 515-26.
11. Kozak, M., Influence of mRNA secondary structure on binding and migration of 40S ribosomal subunits. Cell, 1980. 19(1): p. 79-90.
12. De Vlugt, C., D. Sikora, and M. Pelchat, Insight into Influenza: A Virus Cap-Snatching. Viruses, 2018. 10(11).
13. Pelletier, J. and N. Sonenberg, Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature, 1988. 334(6180): p. 320-5.
14. Lukavsky, P.J., Structure and function of HCV IRES domains. Virus Res, 2009. 139(2): p. 166-71.
15. Egloff, M.P., et al., An RNA cap (nucleoside-2'-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. Embo j, 2002. 21(11): p. 2757-68.
16. Ray, D., et al., West Nile virus 5'-cap structure is formed by sequential guanine N-7 and ribose 2'-O methylations by nonstructural protein 5. J Virol, 2006. 80(17): p. 8362-70.
17. Filomatori, C.V., et al., A 5' RNA element promotes dengue virus RNA synthesis on a circular genome. Genes Dev, 2006. 20(16): p. 2238-49.
18. Sanford, T.J., et al., Circularization of flavivirus genomic RNA inhibits de novo translation initiation. Nucleic Acids Res, 2019. 47(18): p. 9789-9802.
19. Gebhard, L.G., C.V. Filomatori, and A.V. Gamarnik, Functional RNA elements in the dengue virus genome. Viruses, 2011. 3(9): p. 1739-56.
20. Dong, H., B. Zhang, and P.Y. Shi, Terminal structures of West Nile virus genomic RNA and their interactions with viral NS5 protein. Virology, 2008. 381(1): p. 123-35.
21. Clyde, K. and E. Harris, RNA secondary structure in the coding region of dengue virus type 2 directs translation start codon selection and is required for viral replication. J Virol, 2006. 80(5): p. 2170-82.
22. Hahn, C.S., et al., Conserved elements in the 3' untranslated region of flavivirus RNAs and potential cyclization sequences. J Mol Biol, 1987. 198(1): p. 33-41.
23. Friebe, P. and E. Harris, Interplay of RNA elements in the dengue virus 5' and 3' ends required for viral RNA replication. J Virol, 2010. 84(12): p. 6103-18.
24. Alvarez, D.E., et al., Long-range RNA-RNA interactions circularize the dengue virus genome. J Virol, 2005. 79(11): p. 6631-43.
25. You, S. and R. Padmanabhan, A novel in vitro replication system for Dengue virus. Initiation of RNA synthesis at the 3'-end of exogenous viral RNA templates requires 5'- and 3'-terminal complementary sequence motifs of the viral RNA. J Biol Chem, 1999. 274(47): p. 33714-22.
26. Davis, W.G., et al., Identification of cis-acting nucleotides and a structural feature in West Nile virus 3'-terminus RNA that facilitate viral minus strand RNA synthesis. J Virol, 2013. 87(13): p. 7622-36.
27. Brinton, M.A. and M. Basu, Functions of the 3' and 5' genome RNA regions of members of the genus Flavivirus. Virus Res, 2015. 206: p. 108-19.
28. Blackwell, J.L. and M.A. Brinton, Translation elongation factor-1 alpha interacts with the 3' stem-loop region of West Nile virus genomic RNA. J Virol, 1997. 71(9): p. 6433-44.
29. Davis, W.G., et al., Interaction between the cellular protein eEF1A and the 3'-terminal stem-loop of West Nile virus genomic RNA facilitates viral minus-strand RNA synthesis. J Virol, 2007. 81(18): p. 10172-87.
30. Alvarez, D.E., et al., Role of RNA structures present at the 3'UTR of dengue virus on translation, RNA synthesis, and viral replication. Virology, 2005. 339(2): p. 200-12.
31. Shan, C., et al., A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models. Nat Med, 2017. 23(6): p. 763-767.
32. Gurtu, V., G. Yan, and G. Zhang, IRES bicistronic expression vectors for efficient creation of stable mammalian cell lines. Biochem Biophys Res Commun, 1996. 229(1): p. 295-8.
33. Stinski, M.F. and H. Isomura, Role of the cytomegalovirus major immediate early enhancer in acute infection and reactivation from latency. Med Microbiol Immunol, 2008. 197(2): p. 223-31.
34. Donnelly, M.L.L., et al., Analysis of the aphthovirus 2A/2B polyprotein 'cleavage' mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal 'skip'. J Gen Virol, 2001. 82(Pt 5): p. 1013-1025.
35. Momose, F. and Y. Morikawa, Polycistronic Expression of the Influenza A Virus RNA-Dependent RNA Polymerase by Using the Thosea asigna Virus 2A-Like Self-Processing Sequence. Front Microbiol, 2016. 7: p. 288.
36. Zhu, X., et al., Self-cleaving peptides for expression of multiple genes in Dictyostelium discoideum. PLoS One, 2023. 18(3): p. e0281211.
37. Thio, C.L. and C. Hawkins, 148 - Hepatitis B Virus and Hepatitis Delta Virus, in Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases (Eighth Edition), J.E. Bennett, R. Dolin, and M.J. Blaser, Editors. 2015, W.B. Saunders: Philadelphia. p. 1815-1839.e7.
38. Schürer, H., et al., A universal method to produce in vitro transcripts with homogeneous 3' ends. Nucleic Acids Res, 2002. 30(12): p. e56.
39. Liu, H., et al., The 5' and 3' Untranslated Regions of the Japanese Encephalitis Virus (JEV): Molecular Genetics and Higher Order Structures. Front Microbiol, 2021. 12: p. 730045.
40. Zuker, M., Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res, 2003. 31(13): p. 3406-15.
41. Darty, K., A. Denise, and Y. Ponty, VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics, 2009. 25(15): p. 1974-5.
42. Liu, Z.-Y., et al., Viral RNA switch mediates the dynamic control of flavivirus replicase recruitment by genome cyclization. eLife, 2016. 5: p. e17636.
43. Villordo, S.M., et al., RNA Structure Duplications and Flavivirus Host Adaptation. Trends in Microbiology, 2016. 24(4): p. 270-283.
44. Chiu, W.W., R.M. Kinney, and T.W. Dreher, Control of translation by the 5'- and 3'-terminal regions of the dengue virus genome. J Virol, 2005. 79(13): p. 8303-15.
45. Liu, Z., et al., Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Sci Rep, 2017. 7(1): p. 2193.
46. Avis, J.M., G.L. Conn, and S.C. Walker, Cis-acting ribozymes for the production of RNA in vitro transcripts with defined 5' and 3' ends. Methods Mol Biol, 2012. 941: p. 83-98.
47. Khromykh, A.A. and E.G. Westaway, Subgenomic replicons of the flavivirus Kunjin: construction and applications. J Virol, 1997. 71(2): p. 1497-505.
48. Molenkamp, R., et al., Yellow fever virus replicons as an expression system for hepatitis C virus structural proteins. J Virol, 2003. 77(2): p. 1644-8.
49. Pang, X., M. Zhang, and A.I. Dayton, Development of Dengue virus type 2 replicons capable of prolonged expression in host cells. BMC Microbiol, 2001. 1: p. 18.
50. Bidet, K. and M.A. Garcia-Blanco, Flaviviral RNAs: weapons and targets in the war between virus and host. Biochem J, 2014. 462(2): p. 215-30.
51. Manzano, M., et al., Identification of cis-acting elements in the 3'-untranslated region of the dengue virus type 2 RNA that modulate translation and replication. J Biol Chem, 2011. 286(25): p. 22521-34.
52. Sztuba-Solinska, J., et al., Structural complexity of Dengue virus untranslated regions: cis-acting RNA motifs and pseudoknot interactions modulating functionality of the viral genome. Nucleic Acids Res, 2013. 41(9): p. 5075-89.
53. Baker, C. and P.Y. Shi, Construction of Stable Reporter Flaviviruses and Their Applications. Viruses, 2020. 12(10).
54. van den Elsen, K., J.P. Quek, and D. Luo, Molecular Insights into the Flavivirus Replication Complex. Viruses, 2021. 13(6).
55. Fajardo, T., et al., The flavivirus polymerase NS5 regulates translation of viral genomic RNA. Nucleic Acids Res, 2020. 48(9): p. 5081-5093.
56. Xie, X., et al., Zika Virus Replicons for Drug Discovery. EBioMedicine, 2016. 12: p. 156-160.
57. Berzal-Herranz, A., et al., The Genomic 3' UTR of Flaviviruses Is a Translation Initiation Enhancer. Int J Mol Sci, 2022. 23(15).
58. Brinton, M.A., A.V. Fernandez, and J.H. Dispoto, The 3'-nucleotides of flavivirus genomic RNA form a conserved secondary structure. Virology, 1986. 153(1): p. 113-21.
59. Shurtleff, A.C., et al., Genetic variation in the 3' non-coding region of dengue viruses. Virology, 2001. 281(1): p. 75-87.
60. Ng, W.C., et al., The 5' and 3' Untranslated Regions of the Flaviviral Genome. Viruses, 2017. 9(6).
61. Mazeaud, C., W. Freppel, and L. Chatel-Chaix, The Multiples Fates of the Flavivirus RNA Genome During Pathogenesis. Front Genet, 2018. 9: p. 595.
62. de Borba, L., et al., RNA Structure Duplication in the Dengue Virus 3' UTR: Redundancy or Host Specificity? mBio, 2019. 10(1).
63. Zhang, Q.Y., et al., Sequence duplication in 3' UTR modulates virus replication and virulence of Japanese encephalitis virus. Emerg Microbes Infect, 2022. 11(1): p. 123-135.
64. Khromykh, A.A., et al., Significance in replication of the terminal nucleotides of the flavivirus genome. J Virol, 2003. 77(19): p. 10623-9.
65. Xiang, K. and D.P. Bartel, The molecular basis of coupling between poly(A)-tail length and translational efficiency. eLife, 2021. 10: p. e66493.
66. Pelham, H.R. and R.J. Jackson, An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem, 1976. 67(1): p. 247-56.
67. Funk, A., et al., RNA structures required for production of subgenomic flavivirus RNA. J Virol, 2010. 84(21): p. 11407-17.
68. Szucs, M.J., et al., A New Subclass of Exoribonuclease-Resistant RNA Found in Multiple Genera of Flaviviridae. mBio, 2020. 11(5).
69. You, S., et al., In vitro RNA synthesis from exogenous dengue viral RNA templates requires long range interactions between 5'- and 3'-terminal regions that influence RNA structure. J Biol Chem, 2001. 276(19): p. 15581-91.
70. Imburgio, D., et al., Studies of promoter recognition and start site selection by T7 RNA polymerase using a comprehensive collection of promoter variants. Biochemistry, 2000. 39(34): p. 10419-30.
71. Conrad, T., et al., Maximizing transcription of nucleic acids with efficient T7 promoters. Commun Biol, 2020. 3(1): p. 439.
72. Isomura, H., et al., A cis element between the TATA Box and the transcription start site of the major immediate-early promoter of human cytomegalovirus determines efficiency of viral replication. J Virol, 2008. 82(2): p. 849-58.
73. Turchinovich, A., et al., Interference in transcription of overexpressed genes by promoter-proximal downstream sequences. Sci Rep, 2016. 6: p. 30735.
74. Adelman, K. and J.T. Lis, Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet, 2012. 13(10): p. 720-31.
75. Nikolaitchik, O.A., et al., Selective packaging of HIV-1 RNA genome is guided by the stability of 5' untranslated region polyA stem. Proc Natl Acad Sci U S A, 2021. 118(50).
校內:2028-08-16公開