簡易檢索 / 詳目顯示

研究生: 王瑞鋐
Wang, Ruei-Hung
論文名稱: 考量下游水質及河川流態於水庫最佳化操作之研究
Optimal Reservoir Operation Considering Downstream Water Quality and Ecological Flow Regimes
指導教授: 孫建平
Suen, Jian-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 97
中文關鍵詞: 河川流態倒傳遞類神經網路水質推估模式遺傳演算法水庫最佳化操作環境流態因子
外文關鍵詞: Water quality model, Environmental flow components, Flow regime, Optimal reservoir operation, Artificial neural networks, Genetic algorithm
相關次數: 點閱:251下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以石門水庫作為研究區域,欲建立一個以旬為期距的水庫最佳化操作策略,在供應人類需水的同時,亦包含了對水質以及生態上的考量。台灣地區為了有效的利用水資源,以及於洪水來臨時防災等目的,許多河川都建造了水庫等水工結構物,導致下游河川中流量變化規則化,或是發電時短延時內大小落差嚴重的流量變化,皆造成河川中嚴重的生態影響,規則化的結果使得生態系統趨於單調,短延時內落差嚴重的流量變化則影響對於環境變化容忍度範圍較小的物種,使得生物多樣性降低,因此決策者於水資源管理時應注意流態變化如何影響河川生態系統。
    最佳化模式中之目標函數由需水目標、水質目標、生態目標所結合,人類需水參考現行的各標的計畫需水量及M-5石門水庫運轉操作規則制定,生態方面則參考Richter等人(2007)所提出之環境流態因子(Environmental flow components,EFCs)作為生態考量目標。由於水庫放流的變化會影響下游水質的變化,因此先以倒傳遞類神經網路建構水質的推估模式,其中歷史流量、歷史雨量、歷史上游水質、量測水質之旬數為輸入,歷史下游水質為輸出,而水庫操作管理之流量代入推估模式得水質後,將其作為水質考量目標。確立需水目標、生態目標與水質目標後,結合此三大目標應用於建立水庫最佳化操作模式,以水庫旬蓄水歷線為最佳化模式中的決策變數,並應用遺傳演算法搜尋最佳化模式的最佳解,嘗試提出一個可供未來欲考量水質及生態之水資源管理政策上的參考。

    This study develops an optimal reservoir management model based on each ten-day operation periods for Shihmen Reservoir. The model tries to not only meet the human water requirement, but also to consider water quality and ecological issues. In Taiwan, lots of infrastructures have been built in almost every river to effectively use water resources and provide disaster defense. It results in downstream flow regulation or violent flow fluctuation that causes impacts on aquatic ecosystem biodiversity. Decision makers should take flow variability into account in water resources management policy.
    Human demands, water quality, and ecological issues are considered in the optimal reservoir management model. Human demands objective is based on water rights of different users and M-5 Operation Rules of Shihmen Reservoir. Ecological objective is based on consideration of Environmental flow components (Richter et al. 2007). Water quality model uses an artificial neural network model to simulate downstream water quality by using streamflow, rainfall, upstream water quality, and measure time as inputs. Then this model is combined with human demands and environmental flow components considerations to establish an optimal reservoir management model by using genetic algorithm. The optimal reservoir operation model considers human demands, water quality and flow regime to benefit to both human society and aquatic ecosystems.

    摘要 I Abstract II 謝誌 III 目錄 V 圖目錄 VII 表目錄 IX 第一章 前言 1 1-1 研究動機與目的 1 1-2 研究方法與流程 3 1-3 論文架構 4 第二章文獻回顧 7 2-1 河川生態系統與水文指標和環境流態因子的連結 7 2-2 水質變化性融入水資源管理 13 2-3 類神經網路 14 2-4 最佳化水庫操作模式與遺傳演算法 16 第三章  理論概述 19 3-1 水文指標與環境流態因子 19 3-2 倒傳遞類神經網路架構 24 3-3 遺傳演算法 30 第四章 研究案例 35 4-1 研究區域概述-以石門水庫以及大漢溪流域為例 35 4-2 倒傳遞類神經網路模式的建立 40 4-3 最佳化模式的建立 42 第五章 結果與討論 53 5-1 倒傳遞類神經網路推估水質模式結果 53 5-2 應用遺傳演算法搜尋最佳化模式之最佳解結果 62 第六章 結論與建議 78 6-1 結論 78 6-2 建議 80 參考文獻 82 附錄 88 附錄一 無枯水期與豐水期限制之最佳化模式結果(S0=200) 88 附錄二 無枯水期與豐水期限制之最佳化模式結果(S0=150) 90 附錄三 無枯水期與豐水期限制之最佳化模式結果(S0=220) 92 附錄四 目標函數值 94 附錄五 水質推估模式輸入組與輸出組資料 95

    Alczar J., A. Palau, and C. V. Garca., “A neural net model for environmental flow estimation at the Ebro River Basin, Spain.” Journal of Hydrology 349, 44– 55., 2008
    Chang F. J. and L. Chen, “Real-Coded Genetic Algorithm for Rule-Based Flood Control Reservoir Management.” Water Resources Management, 12(3): 185-198, 1998
    Christer N. and B. M. Renflt, “Linking Flow Regime and Water Quality in Rivers: a Challenge to Adaptive Catchment Management.” Ecology and Society 13(2): 18, 2008
    Connell J. H., “Diversity in Tropical Rainforests and Coral Reefs.” Science, 199: 1302-1310, 1978
    Dagli C. H. and J. F. Miles, “Determine Operating Policies for a Water Resource System.” Journal of Hydrology, 47(3/4)., 1980
    Darwin C., “On the Origin of Species by Means of Natural Selection, l. ed.” Watts and Co., Londres., 1945
    East V., and M. J. Hall, ”Water resource system optimization using genetic algorithms.” Hydroinformatics 94, Proc., 1st Int. Conf. on Hydroinformatics, Balkema, Rotterdam, The Netherlands, pp. 225-231, 1994.
    Franklin K. L., E. D. William, and J. D. William, “Downstream Ecological Effects of Dams.” BioScience, Vol. 45, No. 3, Ecology of Large Rivers, pp. 183-192 , 1995
    Grefenstette, J. J., “Optimization of control parameters for genetic algorithms.” IEEE Trans. Systems, Man, and Cybernetics, SMC-16(1) 122-128., 1986
    Goldberg D. E. “Genetic Algorithms in Search, Optimization and Machine Learning.” Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA., 1989
    Gordon N. D., T. A. McMahon, B. L. Finlayson, C. J. Gippel and R. J. Nathan, “Stream Hydrology: An Introduction for Ecologist.” John Wiley, New York, 2004
    Holland J., “Adaptation in Natural and Artificial Systems.” University of Michigan Press, Ann Arbor, 1975
    Hopfield J. J., “Neural Networks and Physical Systems with Emergent Collective Computational Abilities.” Proceeding of the National Acadey of Scientists. 79: 2554-2558, 1982
    Hopfield J. J., and D. W. Tank, “Neural Computations of Decisions in Optimization Problems.” Biological Cybernetrics. 51: 141-152, 1985
    Hsu S. K., “Shortage Indices for Water-Resources Planning in Taiwan.” Journal of Water Resources Planning and Management, 121(2): 119-131, 1995
    Jowett I. G.., “Inatream Flow Methods: A Comparison of Approaches.” Regulated River: Research and Management, 13(2), 115-127, 1997
    Kuo J. T., Y. Y. Wang, and W. S. Lung, “A Hybrid Neural-Genetic Algorithm for Reservoir Water Quality Management.” Water Research 40: 1367-1376, 2006
    McCulloch W. S., and W. Pitts, “A Logical Calculus of Ideas Immanent in Nervous Activity.” Bulletion of Mathematical Biophysics. 5: 115-133, 1943
    Michalewicz Z., “Genetic Algorithms+ Data Structures= Evolution Programs.” Springer., 1996
    Michalewicz Z., and M. Schoenauer, “Evolutionary Algorithms for Constrained Parameter Optimization Problems.” Evolutionary Computation, 4(1): 1-32, 1996
    Olden, J. D., and N. L. Poff., “Redundancy and the Choice of Hydrologic Indices for Characterizing Streamflow Regimes.” River Research And Applications, 19:101-121.,2003

    Piramuthu S., M. Shaw, and J. Gentry, “A Classification Approach Using Multi-Layered Neural Networks.” Decision Support Systems 11(5):509–525, 1994
    Poff N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks, and J. C. Stromberg., “The Natural Flow Regime.” Bioscience 47, pp. 769-784., 1997
    Resenblatt F., “A Probabilistic Model for Information Storage and Organization in the Brain.” Psych. Rev. 65: 386-408, 1958
    Revelle C., E. Joeres, and W. Kirby, “The Linear Decision Rule in Reservoir Management and Design. I. Development of the Stochastic Model.” Water Resources Research, 5(4): 767-777, 1969
    Richter B. D., J. V. Baumgartner, J. Powell, and D.P. Braun, “A Method for Assessing Hydrologic Alteration within Ecosystems.” Conservation Biology, 10(4): 1163-1174., 1996
    Richter B. D., J. V. Baumgartner, R. Wigington, and D. P. Braun, “How Much Water Does A River Need.” Freshwater Biology,.37(1): 231-249, 1997
    Richter B. D., J. V. Baumgartner, D.P. Braun, and J. Powell, “A Spatial Assessment of Hydrologic Alteration within A River Network.” Regulated River: Research and Management, 14: 329-340, 1998
    Richter B. D., and G. A. Thomas, “Restoring Environmental Flows by Modifying Dam Operations.” Ecology and Society 12(1): 12., 2007
    Rumelhart D. E., and J. L. McClelland, “Parallel Distributed Processing: Exploration in the Microstructure of Cognition.” Vol. 1. Cambridge, MA: MIT Press., 1986
    Suen J. P., “Ecological Based Methods for Multi-Objective Water Resources Management in Taiwan.” Ph. D. dissertation, University of Illinois, Urbana, 2005
    Suen J. P., and J. W. Eheart, “Reservoir Management to Balance Ecosystem and Human Needs: Incorporating the Paradigm of the Ecological Flow Regime.” Water Resources Research, 43(3): W03417., 2006
    Suen J. P., and E. E. Herricks, “Developing Fish Community Based Ecohydrological Indicators for Water Resource Management in Taiwan.” Hydrobiologia 625: 223-234, 2009
    Tharme R. E., “A Global Perspective on Environmental Flow Assessment: Emerging Trends in the Development and Application of Environmental Flow Methodologies for Rivers.” River Research and Applications, 19(5-6), 397-441, 2003
    Xia X. H., Z. F. Yang, and Y. X. Wu, “Incorporating Eco-environmental Water Requirements in Integrated Evaluation of Water Quality and Quality: A Study for the Yellow River.” Water Resources Management, Vol.23, No. 6:1067-1079, 2009
    Zhang X. H., H. W. Zhang, B. Chen, H. C. Guo, G. Q. Chen, and B. A. Zhao, “An Inexact-Stochastic Dual Water Supply Programming Model.” Communications in Nonlinear Science and Numerical Simulation 14: 301-309, 2009
    王瑞鋐、孫建平,「類神經網路於建立溪流棲息地之模擬模式」,九十七年度農業工程研討會,2008
    向子菁,「智慧型控制理論於水庫操作決策之研究」,國立台灣大學農業工程研究所碩士論文,1999
    巫孟璇,「平行演算法於水庫優選問題之應用」,國立中興大學土木工程研究所碩士論文,2001
    吳子青,「結合河川流態與環境梯度概念於水資源最佳化管理之研究」,國立台灣大學生物環境系統工程學研究所碩士論文,2008
    邱昱禎,「模糊規劃理論與優選法於水庫操作之研究」,國立台灣大學生物環境系統工程學研究所碩士論文,2003
    周世凱,「應用類神經模式推估未設測站之自然流態」,國立成功大學水利及海洋工程研究所碩士論文,2008
    周勁松、夏星輝、楊志峰,「從水質角度論黃河支流水資源」,環境科學學報,22(3):338-342,2002
    孫建平,「類神經網路及其應用於降雨及逕流過程之研究」,國立台灣大學農業工程研究所碩士論文,1996
    夏軍、王渺林、王中根,「針對水功能區劃水質目標的可用水資源聯合評估方法」,自然資源學報,20(5):752-760,2005
    夏星輝、張曦、楊志峰,「從水質水量相結合的角度評價黃河的水資源」,自然資源學報,19(3):293-299,2004
    夏星輝、楊志峰、沈珍瑤,「從水質水量相結合的角度再論黃河的水資源」,環境科學學報,25(5):595-600,2005
    張斐章、王文清,「模糊線性規劃於水資源規劃之應用」,台灣水利,43(1):31-41,1995
    張斐章、張麗秋,「智慧型水庫即時操作控制系統」,農業工程學報,45(4):18-30,1999
    張斐章、黃浩倫、張麗秋,「回饋式類神經網路於河川流量推估之應用」,中國農業工程學報,47(2):32-39,2001
    張斐章、張麗秋、黃浩倫,「類神經網路理論與實務」,東華書局,2003
    陳柏蒼、陳昶憲,「未設測站流量推估-利用類神經網路建構模式」,第七屆海峽兩岸水利科技交流研討會,2002
    彭瑞國、吳瑞賢、畢嵐杰、溫博文,「保育用水觀念初探」,水資源管理研討會論文集,2005
    戴欣怡,「考量生態流量之水庫最佳操作策略」,國立台灣大學生物環境系統工程學研究所碩士論文,2006
    蕭政宗、吳富春,「變異範圍法RVA應用於河川生態流量之規劃」,第二屆生態工程學術研討會,第33-58頁,2005
    經濟部水利署水利規劃試驗所,「生態水文於多目標水資源管理之研究應用」,經濟部水利署水利規劃試驗所,2005

    下載圖示 校內:2011-07-29公開
    校外:2011-07-29公開
    QR CODE