簡易檢索 / 詳目顯示

研究生: 羅凱謙
Lo, Kai-Chien
論文名稱: 抗高溫耐腐蝕之輕水型核反應爐管道材料設計與雷射熱焠火工藝殘留應力之探討
High temperature and corrosion resistance FGM pipe design for light water reactor coolant system and residual stresses characterization for Gaussian laser heating quenching processes
指導教授: 賴新一
Lai, Hsin-Yi
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 98
中文關鍵詞: 功能性材料功能性複合材料安全裕度抗腐蝕阻力
外文關鍵詞: FGM, FGC, margin of safety, corrosion resistance
ORCID: https://orcid.org/0000-0001-7029-9456
ResearchGate: https://www.researchgate.net/profile/Kai_Lo3
相關次數: 點閱:68下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現有的輕水型核反應爐 (Light Water Reactor, LWR)所使用冷卻管道為功能複合材料 (Functionally Graded Composite Material, FGC)。該複合材料結構為表面鍍層約30um~100um之Fe-Cr-Si固溶體結構;基材為T91肥粒鐵-麻田散鐵合金結構或是化學氣象沉積碳化矽 (Chemical Vapor Deposited – Silicon Carbide, CVD-SiC)構成。此類核反應爐冷卻管道所使用的冷卻液常為鉛铋共晶體(Lead-Bismuth Eutectoid, LBE),該液體在通過管道內部時會產生對內壁的腐蝕與損傷可能性。管道表面與LBE接觸之Fe-Cr-Si固溶體結構抗腐蝕性為藉由1.25wt%矽濃度與氧化層成長率作為判斷依據,Fe-Cr-Si固溶體結構當中的Cr與Si含量可與LBE液體反應形成氧化層達到保護基材損傷的功能。
      本研究為了減緩應力集中且提升熱衝擊阻力以及矽濃度達到高耐腐蝕性之能力採用二相與三相功能性材料(Functionally Graded Material, FGM)比對傳統表面鍍層結構之FGC應用於圓管模型在靜態升溫與動態熱疲勞邊界條件中進行評估;材料強度部分會以安全裕度(Margin of Safety)做為評估標準。本文採用方法與技術以核反應爐管道高過於1200。C可能產生嚴重冷卻液外洩的事故發生的情況(Large-Break Loss-of-Coolant Accident, LBLOCA)進行強度比對。
      本研究之結果表明在Fe-Cr-Si固溶體結構與CVD-SiC二相功能性材料以及Fe-Cr-Si固溶體結構、TiO2與CVD-SiC三相功能性材料所構成的冷卻管道模型在安全裕度、熱衝擊阻力以及表面氧化層厚度之生成與品質相較於傳統Fe12Cr2Si-T91的功能複合材料結構皆有所提升。相較於傳統冷卻管道最高安全裕度為0.98情況下能提升至0.99~3.17之範圍;熱衝擊阻力值相較於Fe12Cr2Si-T91的FGC結構提升7.64%;氧化層厚度在第10000小時時候能成長至相較於FGC結構提升25%。

    The existing light water nuclear reactors utilize functionally graded composite materials for their cooling pipes. The composite material structure consists of Fe-Cr-Si solid solution structure with a surface coating of approximately 30um to 100um. The substrate is composed of either a T91 ferritic-martensitic alloy structure or a chemical vapor deposition silicon carbide (CVD-SiC) structure. The cooling liquid commonly used in such nuclear reactor cooling pipes is lead-bismuth eutectic (LBE), which can cause corrosion and damage to the inner walls of the pipes. The Cr and Si content in the Fe-Cr-Si solid solution structure can react with the LBE liquid to form an oxide layer, which protects the substrate from damage.
    In this study, a two-phase and three-phase functionally graded material (FGM) is used to mitigate stress concentration, improve thermal shock resistance, and achieve high corrosion resistance with a high silicon concentration. A comparison is made between FGM and the traditional surface coating structure of FGC in evaluating the performance of circular tube models under static heating and dynamic thermal fatigue boundary conditions. Material strength will be evaluated based on the margin of safety. The methodology and techniques used in this paper are applied to assess the strength comparison in the event of a Large-Break Loss-of-Coolant Accident (LBLOCA) with temperatures exceeding 1200°C in nuclear reactor pipes.
    The research results show that the cooling pipe models composed of the Fe-Cr-Si solid solution structure and CVD-SiC two-phase functionally graded materials, as well as the Fe-Cr-Si solid solution structure、TiO2 and CVD-SiC three-phase functionally graded materials, have improved safety margins、thermal shock resistance and surface oxide layer thickness compared to the traditional Fe12Cr2Si-T91 functionally graded composite material structure. Compared with the maximum safety margin of 0.98 for traditional coolant pipes, the results of this study can be improved to a range of 0.99-3.17. The thermal shock resistance value is improved by 7.64% compared to the FGC structure of Fe12Cr2Si-T91. The oxide layer thickness can grow by 25% compared to the FGC structure at 10,000 hours.

    摘要 I Extend Abstract III 誌謝 XI 目錄 XII 圖目錄 XV 表目錄 XIX 符號目錄 XXI 第一章 緒論 1 1.1研究動機 1 1.2研究目標 4 第二章 文獻回顧 7 2.1 二維平面應變輕水型冷卻管道之強度分析回顧 7 2.2 圓管表面氧化層與矽濃度生成之抗腐蝕性回顧 8 2.3 高溫環境之靜態與熱衝擊試驗安全裕度換算 10 2.4 旋轉式熱焠火工藝殘留應力探討 11 第三章 冷卻管道模型建構之研究流程與設計步驟 12 3.1 研究流程與設計步驟 12 3.1.1 穩態升溫二維管道分析 12 3.1.2 雷射熱疲勞邊界之二維管道分析 13 3.1.3 雷射熱焠火邊界三維圓管分析 13 3.1.4 設計流程 14 3.2 功能性梯度材料結構設計 18 3.3. 二維圓管模型建構與應力分析理論 22 3.4. 3D雷射熱焠火圓管模型與應力分析理論 25 3.5. 邊界條件設定與熱衝擊阻力理論 30 3.5.1 最大剪應力理論與安全裕度計算 30 3.5.2 高斯雷射邊界條件設定 32 3.5.3 熱衝擊阻力係數計算 36 3.5.4 表面氧化層成長率以及抗腐蝕性分析 36 第四章 二維以及三維輕水型核反應爐圓管冷卻管道分析 39 4.1. 二維圓管穩態分析 39 4.1.1 安全裕度分析 40 4.1.2穩態升溫結構強度評估與分析探討 54 4.1.3 矽元素濃度分析 54 4.1.4 穩態升溫抗腐蝕性分析探討 61 4.2 二維平面應變冷卻管道動態熱疲勞模型分析 62 4.2.1 安全裕度分析 62 4.2.2 熱衝擊試驗強度分析與探討 70 4.2.3 熱衝擊阻力分析 71 4.2.4 熱衝擊阻力分析結論與探討 73 4.2.5 矽元素濃度與氧化層成長率分析 73 4.2.6 矽元素濃度與氧化層成長率結論與探討 75 4.3 三維旋轉式圓管雷射熱焠火強度分析結果評估與驗證 76 4.3.1 氧化層厚度評估 81 4.3.2 殘留應力強度分析 82 4.3.3 雷射熱焠火殘留應力與氧化層厚度之分析與探討 87 第五章 結論與未來展望 88 5.1 結論 88 5.2 未來展望 89 參考文獻 91

    [1] Sheng, G. G., and Wang, X., (2008). "Thermomechanical vibration analysis of a functionally graded shell with flowing fluid", European Journal of Mechanics – A/Solids, vol. 27, Iss. 6, pp. 1075-1087.
    [2] Hui, S. S., (2004). "Thermal postbuckling behavior of functionally graded cylindrical shells with temperature-dependent properties", International Journal of Solids and Structures, vol. 41, Iss. 7, pp. 1961-1974.
    [3] Hui, S. S., (2013). "Thermal postbuckling of shear deformable FGM cylindrical shells surrounded by an elastic medium", Journal of Engineering Mechanics, vol. 139, Iss. 8.
    [4] Kyung, S. N., and Kim, J. H., (2006). "Three-dimensional thermomechanical buckling analysis for functionally graded composite plates", Composite Structures, vol73, Iss. 4, pp. 413-422.
    [5] Reddy, J. N., and Chin, C.D., (1998). "Thermomechanical analysis of functionally graded cylinders and plates", Journal of Thermal Stresses, vol. 21, Iss. 6, pp. 593-626.
    [6] Ballinger, R. G., (2011). "The development and production of a functionally graded composite for Pb-Bi service", U.S. Department of Energy Office of Scientific and Technical Information, (Technical Report DOE-ID1 4742).
    [7] Elliott, S. F., (2013). "Materials testing and development of functionally graded composite fuel cladding and piping for the lead-bismuth cooled nuclear reactor", Master's thesis, Massachusetts Institute of Technology, Massachusetts.
    [8] Serrano, De. Caro. M., Woloshun, K. A., Rubio, F. V., and Maloy, S. A., (2013). Materials Selection for the Lead-Bismuth Corrosion and Erosion Tests in DELTA Loop (No. LA-UR-13-22282). Los Alamos National Lab.(LANL), Los Alamos, NM (United States).
    [9] Wenxuan, X., Yongwei, W., and Xunfeng, L., (2016). "Experimental investigation of the thermal hydraulics in lead bismuth eutectic-helium experimental loop of an accelerator-driven system", Nucleer Engineering and Technology, vol. 48, Iss. 5, pp. 1154-1161.
    [10] Hao, W., Jun, X., and Hui, W., (2021). “Corrosion behavior and surface treatment of cladding materials used in high-temperature lead-bismuth eutectic alloy: a review”, Coatings, vol. 11, Iss. 3, doi: 10.3390/coatings11030364
    [11] Kwangwon, A., Kyohun, J., and Sung, P. P., (2018). "Safety evaluation of silicon carbide and zircaloy-4 cladding during a Large-Break Loss-of Coolant Accident", Energies, vol. 11, Iss. 12, doi: 10.3390/en11123324.
    [12] Ting, W. L., (2019). “Risk-informed safety margin characterization for A Larger Break Loss-of-coolant Accident of Nuclear Power Plants and Associated Peak Cladding Temperature Margin Evolution”, Master Thesis, University of Liverpool, Liverpool.
    [13] Masahide, S., Kenta, M., and Takashi, S., (2020). “Verification of safety margin of reactor pressure vessel exposed to various thermal transients based on probabilistic approach”, E-Journal of Advanced Maintenance, vol. 11, No. 4, pp. 172-178, ISSN-1883-9894.
    [14] Vincenzo, V. R., and Thierry, W., (2010). "The high burn-up structure in nuclear fuel", materialstoday, vol. 13, Iss. 12, pp. 24-32.
    [15] Short, M. P., Ballinger, R. G., and Hanninen, H. E., (2013). "Corrosion resistance of alloys F91 and Fe-12Cr-2Si in lead-bismuth eutectic up to 715℃", Journal of Nuclear Materials, vol. 434, Iss. 1-3, pp. 259-281.
    [16] Amanda, L., Qiufeng, Y., and Samuel, W. M., (2021). "Oxidation behavior of Fe-Cr-2Si alloys in high temperature steam", Corrosion Science, vol. 179. doi: 10.1016/j.corsci.2020.109132.
    [17] Short, M. P., McAlpine, S., Tonks, M., Rezwan, A., Zhang, J., Leong, A., and Qiang, R., (2019). NEUP Final Report: Multilayer Composite Fuel Cladding and Core Internals for LWR Performance Enhancement and Severe Accident Tolerance (No. DOE/NEUP-15-8347; DOE-NE00008413). Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States).
    [18] Li, B., Liao, Q., Zhang, H., Shen, T., Ge, F., and Daghbouj, N., (2021). The effects of stress on corrosion behavior of SIMP martensitic steel in static liquid lead-bismuth eutectic. Corrosion Science, 187, 109477.
    [19] Steinbrueck. M., Grosse, M., Stegmaier, U., Braun, J., and Lorrette., C., (2022). Oxidation of silicon carbide composites for nuclear applications at very high temperatures in steam. Coatings, 12(7), 875.
    [20] Li, J., He, X., Xu, B., Tang, Z., Fang, C., and Yang, G., (2022). Effect of silicon on dynamic/static corrosion resistance of T91 in lead–bismuth eutectic at 550 C. Materials, 15(8), 2862.
    [21] Kokini, K., DeJonge, J., Rangaraj, S., and Beardsley, B., (2002). Thermal shock of functionally graded thermal barrier coatings with similar thermal resistance. Surface and Coatings Technology, 154(2-3), 223-231.
    [22] Zhou, Y. C., and Hashida, T., (2002). Thermal fatigue failure induced by delamination in thermal barrier coating. International Journal of Fatigue, 24(2-4), 407-417.
    [23] Xu, H., Chen, W. W., Zhou, K., Huang, Y., and Wang, Q. J., (2010). Temperature field computation for a rotating cylindrical workpiece under laser quenching. The International Journal of Advanced Manufacturing Technology, 47, 679-686.
    [24] Fakir, R., Barka, N., and Brousseau, J., (2018). Case study of laser hardening process applied to 4340 steel cylindrical specimens using simulation and experimental validation. Case Studies in Thermal Engineering, 11, 15-25.
    [25] Anusha, E., Kumar, A., and Shariff, S. M., (2021). Finite element analysis and experimental validation of high-speed laser surface hardening process. The International Journal of Advanced Manufacturing Technology, 115(7-8), 2403-2421.
    [26] Ramsey, J. K., (2019) "Calculating Factors of Safety and Margins of Safety From Interaction Equations" (No. NASA/TM-2019-220153).
    [27] Hongwei, X., Wayne, C. W., and Zhou, K., (2010). "Temperature field computation for a rotating cylindrical workpiece under laser quenching", The International Journal of Advanced Manufacturing Technology, doi: 10.1007/s00170-009-2206-5.
    [28] Fakir, R., Barka, N., and Brousseau, J., (2018). Case study of laser hardening process applied to 4340 steel cylindrical specimens using simulation and experimental validation. Case Studies in Thermal Engineering, 11, 15-25.
    [29] Huihua, Z., Simin, L., and Shangyu, H., (2018). "The numerical manifold method for transient moisture diffusion in 2D functionally graded materials", IOP Conference Series. Earth and Environmental Science, vol. 189, Iss. 3, doi: 10.1088/1755-1315/189/3/032017.
    [30] Zhang, H., Liu, S., and Han, S., (2018). "Modelling steady moisture diffusion in functionally graded materials with the numerical manifold method", IOP Conference Series. Earth and Environmental Wang J, (2017). "Study of microstructure evolution in F/M steel T91 by in-situ synchrotron wide-angle X-rays scattering", Master Thesis, University of Illinois, Illinois.
    [31] Cho, J. R., and Ha, D. Y., (2001). "Averaging and finite element discretization approaches in the numerical analysis of functionally graded materials", vol. 302, Iss. 2, pp. 187-196.
    [32] Wang, J., (2017). "Study of microstructure evolution in F/M steel T91 by in-situ synchrotron wide-angle X-rays scattering", Master Thesis, University of Illinois, Illinois.
    [33] Zhang, J., Su, C., and Liu, Y., (2020). First-principles study of bcc Fe-Cr-Si binary and ternary random alloys from special quasi-random structure. Physica B: Condensed Matter, 586, 412085.
    [34] Yılmaz, S. O., (2005). Wear behavior of gas tungsten arc deposited FeCrC, FeCrSi, and WCo coatings on AISI 1018 steel. Surface and Coatings Technology, 194(2-3), 175-183.
    [35] Short, M. P., McAlpine, S., Tonks, M., Rezwan, A., Zhang, J., Leong, A., and Qiang, R., (2019). NEUP Final Report: Multilayer Composite Fuel Cladding and Core Internals for LWR Performance Enhancement and Severe Accident Tolerance (No. DOE/NEUP-15-8347; DOE-NE00008413). Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States).
    [36] Subramanian, R., Tripathy, H., Rai, A. K., Hajra, R. N., Saibaba, S., Jayakumar, T., and Kumar, E. R., (2015). Thermal expansion characteristics of Fe–9Cr–0.12 C–0.56 Mn–0.24 V–1.38 W–0.06 Ta (wt.%) reduced activation ferritic–martensitic steel. Journal of Nuclear Materials, 459, 150-158.
    [37] Wan, T., Naoe, T., Kogawa, H., Futakawa, M., Obayashi, H., and Sasa, T., Numerical study on the potential of cavitation damage in a lead-bismuth eutectic spallation target. Materials 2019, 12, 681. [CrossRef] [PubMed]
    [38] Hosemann, P., Kabra, S., and Stergar, E., Micro-structural characterization of laboratory heats of the Ferric/Martensitic steels HT-9 and T91. J. Nucl. Mater. 2010, 403, 7–14. [CrossRef]
    [39] Goela, J. S., Brese, N. E., Burns, L. E., and Pickering, M. A., (2001, September). CVD-SiC for RTP chamber components. In 9th International Conference on Advanced Thermal Processing of Semiconductors,
    [40] Joonho, M., Sungyu, K., and Won, D. P., (2019). "Initial oxidation behavior of Fe-Cr-Si alloys in 1200℃ steam", Journal of Nuclear Materials, vol. 513, pp. 297-308.
    [41] Bingsheng, L., Qing, L., and Hongpeng, Z., (2021). "The effects of stress on corrosion behavior of SIMP martensitic steel in static liquid lead-bismuth eutectic", Corrosion Science, vol. 187, doi: 10.1016/j.corsci.2021.109477.
    [42] Tao, W., and Shigeru, S., (2018). "Flow-accelerated corrosion of type 316L stainless steel caused by turbulent lead-bismuth eutectic flow", Metals, doi: 10.3390/met8080627.
    [43] Postlethwaite, J., and Nesic, S., (1991). "Hydrodynamics of disturbed flow and erosion-corrosion. Part I-single-phase flow study", The Canadian Jounral of Chemical Engineering, vol. 69, Iss. 3, pp. 698-703.
    [44] Hao, W., Jun, X., and Hui, W., (2021). “Corrosion behavior and surface treatment of cladding materials used in high-temperature lead-bismuth eutectic alloy: a review”, Coatings, vol. 11, Iss. 3, doi: 10.3390/coatings11030364
    [45] Tao, W., Takashi, N., and Masatoshi, F., (2019). "Numerical study on the potential of cavitation damage in a lead-bismuth eutectic spallation target", Materials, vol. 12, Iss. 4, doi: 10.3390/ma12040681.
    [46] Huang, S. F., (2012). “Laser surface hardening of AISI 4140 steel”, Journal of China University of Science and Technology, vol. 50, pp. 49-59.
    [47] Kim, D., Lee, D., Lee, S., Park, K., Lee, H. G., Park, J. Y., and Kim, W. J., (2017). Thermal shock resistance and hoop strength of triplex silicon carbide composite tubes. International Journal of Applied Ceramic Technology, 14(6), 1069-1076.
    [48] Beaulieu, R. A., (2013). "Margin of Safety Definition and Examples Used in Safety Basis Documents and the USQ Process". United States. https: //www.osti.gov/servlets/purl/1134068.
    [49] Faruqui, S., Arabi, A. A., and Parvej, M. S., (2017). Thermal Resistance Approach to analyze temperature distribution in hollow cylinders made of Functionally Graded Material (FGM): under dirichlet boundary condition. In Proceedings of the 3rd International Conference on Mechanical Industrial and Materials Engineering.
    [50] Samel, M. A., (2005). "Kinetics of materials", New Jersey: John Wiley & Sons.
    [51] Jeongyoun, L., (2006). "Effects of Chromium and silicon on corrosion of iron alloys in lead-bismuth eutectic", Ph.D. thesis, Massachusetts Institute of Technology, Massachusetts.
    [52] Short, M. P., McAlpine, S., Tonks, M., Rezwan, A., Zhang, J., Leong, A., and Qiang, R., (2019). NEUP Final Report: Multilayer Composite Fuel Cladding and Core Internals for LWR Performance Enhancement and Severe Accident Tolerance (No. DOE/NEUP-15-8347; DOE-NE00008413). Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States).
    [53] Datta, M. S., Bandyopadhyay, A. K., and Chaudhuri, B., (2002). Sintering of nano crystalline α silicon carbide by doping with boron carbide. Bulletin of Materials Science, 25, 181-189.
    [54] Shackelford, J. F., and Alexander, W., (2000). CRC materials science and engineering handbook. CRC press.
    [55] Wenyi, D., Zhizhong, J., and Jingping, X., (2019). "Interactions between alloy elements and oxygen at the steel-liquid LBE interface determined from first-principles molecular dynamics simulations", Physical Chemistry Chemical Physics, Iss. 46, doi: 10.1039/c9cp05626b, pp. 25521-25926.
    [56] Li, J., He, X., Xu, B., Tang, Z., Fang, C., and Yang, G., (2022). Effect of Silicon on Dynamic/Static Corrosion Resistance of T91 in Lead–Bismuth Eutectic at 550° C. Materials, 15(8), 2862.
    [57] Hongwei, X., Wayne, C. W., and Zhou, K., (2010). "Temperature field computation for a rotating cylindrical workpiece under laser quenching", The International Journal of Advanced Manufacturing Technology, doi: 10.1007/s00170-009-2206-5.
    [58] Masoudi, S., Amirian, G., Saeedi, E., and Ahmadi, M., (2015). The effect of quench-induced residual stresses on the distortion of machined thin-walled parts. Journal of Materials Engineering and Performance, 24, 3933-3941.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE