| 研究生: |
羅云汝 Luo, Yun-Ru |
|---|---|
| 論文名稱: |
AGL6-like基因參與蝴蝶蘭花被發育之探討 Characterization of AGL6-like genes involved in perianth development of Phalaenopsis spp. |
| 指導教授: |
陳虹樺
Chen, H. H. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 唇瓣 、蝴蝶蘭 、花部發育 、轉錄因子 |
| 外文關鍵詞: | Phalaenopsis, floral organ identity, transcription factor, lip |
| 相關次數: | 點閱:54 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蘭花的花器構造由外而內為:花萼、花瓣、唇瓣、合蕊柱及子房。唇瓣為高度特化的花瓣,吸引授粉者前來為其授粉。本篇研究旨在探討屬於MADS-box 轉錄因子的AGL6基因如何參與蘭花發育。
本研究發現姬蝴蝶蘭保存有三個AGL6-like 基因,分別為PeAGL6a,PeAGL6b及PeAGL6c。依據序列比對及演化樹分析的結果,推測姬蝴蝶蘭的AGL6-like 基因經過ㄧ次複製產生兩條同物種同源基因,其中PeAGL6c在序列上與單子葉植物的同源基因相似而較為保留; 另外一條AGL6-like 基因經過突變而改變了部份的胺基酸,並且再次複製而產生PeAGL6a及PeAGL6b,這兩個基因在親緣上獨立於被子植物及裸子植物之間,同時我們發現文心蘭的AGL6-like 基因 (OMADS1)也歸屬此外群,究竟此獨特的AGL6-like外群基因在蘭花花部發育上扮演什麼樣的角色。由RT-PCR及in situ localization的結果得知PeAGL6c在各個花器皆微量表現,但主要表現於花梗,花梗未來會發育成子房的構造,因而保留有大部份植物AGL6基因表現子房的特性。此外PeAGL6c也表現於花發育始原細胞,可能調控始原細胞走向分化。PeAGL6b於花器分化早期表現於各花器,分化晚期於花萼及花瓣內的表現下降,集中表現於唇瓣與合蕊柱,在成熟花苞中則可以看到PeAGL6b在各花器內些微表現。PeAGL6a表現於花發育初期及花苞的唇瓣、花萼與合蕊柱中。由yeast two-hybrid的結果可知PeAGL6a、PeAGL6b、PeAGL6c蛋白皆可與B群PeMADS2~6以及E群的PeMADS8蛋白結合,並與AGL6蛋白相互結合形成異質二元體 (heterodimer),唯一不同的是PeAGL6a與PeAGL6b皆可形成同質二元體 (homodimer) ,但PeAGL6c則否,推測是因為胺基酸的改變造成結合能力差異。由結果推測,表現於花器分化早期的PeAGL6b與 PeAGL6a可能B群及C群MADS-box蛋白形成聚合體,形成調控花部發育的MADS-box轉錄因子複合體。
Phalaenopsis is a member of the Orchidaceae, its flowers contain three sepals, two petals and a highly modified petal, the labellum or lip. Because of lip faces to column (a fusion of the male and female reproductive organs, with stamen on the column top), it is considered to be important for both pollination and evolution of orchids. Previously, we have identified an AGL6-like gene, PeAGL6a, will highly expressed in lip and ectopic expressed in lip-like petal of peloric mutant. In this study we further investigation of whether AGL6-likge genes involved in flower development of Phalaenopsis orchid.
In this study, three AGL6-like genes of P. equestris were found. According to the results of sequence and phylogenetic analyses, suggesting that the ancient AGL6-like gene of P. equestris was duplicated into two paralogous genes. One of them is PeAGL6c which is most similar to AGL6-like gene of monocots in amino acid sequence. The other paralogous gene was duplicated again to produce PeAGL6a and PeAGL6b. PeAGL6a and PeAGL6b were classified with OMADS1 of Oncidium into the branch-group of angiosperm. The role of unique branch-group of AGL6-like genes for orchid floral morphogenesis is interesting. Results of RT-PCR and in situ hybridization revealed that PeAGL6c expressed in all floral organs but higher expressed in pedicle which contains immature ovary. These expression profiles were similar to that of most AGL6-like genes. In addition, PeAGL6c also highly expressed in floral meristem and primodium, and may be related to floral transition identity. PeAGL6b were expressed in all floral organs in early floral differentiation stage, and it continued to highly express in lip and column and slightly express in sepal and petal until floral development complete. In mature flower buds, PeAGL6b was slightly expressed in all floral organs. PeAGL6a was specific expressed in sepal, lip and column in both of early floral development stage and floral bud. In yeast two-hybrid analysis, PeAGL6a、PeAGL6b and PeAGL6c all could interact with B-class MADS proteins and E-class MADS protein (PeMADS8). Moreover, they could interact with each other to form heterodimers. However, PeAGL6a and PeAGL6b could form homodimer, but PeAGL6c could not. It suggested that the capacity of forming homodimer of PeAGL6a and PeAGL6b result from some amino acids were changed. Furthermore, I presumed PeAGL6b and PeAGL6a which expressed in early flower development stage will combine with B-class proteins and E-class MADS proteins to form MADS-box transcription factor complex to regulate floral organ identity.
Aivarez-Buylla E. R., Pelaz S., Liljegren S. J. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci USA 97: 5328―5333, 2000
Almeida J., Rocheta M. and Galego L. Genetic control of flower shape in Antirrhinum majus. Development124:1387-1392, 1997
Becker A., and Theiβen G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol. Phylogenet. Evol. 29:464-489. 2003
Becker A., Saedler H., Theiβen G. Distinct MADS-box gene expression patterns in the reproductive cones of the gymnosperm Gnetum gnemon. Dev Genes Evol 213 (11): 567-572, 2003
Boss P. K., Sensi E., Hua C. Cloning and characterization of grapevine (Vitis vinifera L.). MADS-box genes expressed during inflorescence and berry development. Plant Sci 162 (6): 887-895 33, 2002
Cheng C.C. Identification of transcription factors involved in labellum development in Phalaenopsis orchids. Master degree thesis. National Cheng Kung University. Department of Life Sciences. Tainan, Taiwan. pp. 92, 2007
Cho S., Jang S., Chae S., Chung K.M., Moon Y. H., An G. and Jang S.K. Analysis of the C-terminal region of Arabidopsis thaliana APETALA 1 as a transcription activation domain. Plant Mol. Biol. 40: 419-429. 1999
Christenson E.A. Phalaenopsis. pp: 330. 2001
Coen E.S., and Meyerowitz E.M. The war of the whorls: genetic interactions controlling flower development. Nature 353: 31–37, 1991
Cronk Q., Ojeda I. J. Bird-pollinated flowers in an evolutionary and molecular context. Exp Bot. 59(4):715-27. 2008
De Folter S., Immink R. G. H., Kieffer M. Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell 17: 1424―1433, 2005
Dressler R. Phylogeny and classification of the orchid family. Dioscorides Press, Cambridge, Massachusetts. 1993.
Egea Cortines M., Saedler H. and Sommer H. Ternary complex formation between the MADS-box proteins SOUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18: 5370-5379. 1999
Endress K. Origins of flower morphology. J Exp Zool. 15 (2):105-15, 2001
Fan H. H., Hu Y., Tudor M., Hong M. Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins. Plant J. 12(5):999-1010, 1997
Fan J. H., Li W. Q., Dong X. C., Guo W. and Shu H. R. Ectopic expression of a hyacinth AGL6 homolog caused earlier flowering and homeotic conversion in Arabidopsis. Science in China Series C: Life Sciences 50 (.5): 676-689, 2007
Favaro R., Immink G.H., Ferioli V., Bernasconi B., Byzova M., An-genent G.C., Kater M., and Colombo L.. Ovule-specific MADS-box proteins have conserved protein-protein interactions in monocot and dicot plants. Mol Genet. Genomics 268:152–159, 2002
Fornara F., Parenicov´a L., Falasca G., Pelucchi N., Masiero S., Ciannamea S., Lopez-Dee Z., Altamura M.M., Colombo L., and Kater M.M. Functional characterization of Os- MADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant Physiol 135(4):2207–2219, 2004.
Galliot C., Hoballah M. E., Kuhlemeier C., Stuurman J. Genetics of flower size and nectar volume in Petunia pollination syndromes. Planta 225(1):203-12, 2006
Gietz, R.D., St. Jean, A, Woods, R.A. and Schiest, R.H. Improved method for high efficiency transformation of intact yeast cells. Nucl. Acids Res 8, 1425. 1992
Goh C. J., Arditti J. Orchidaceae. In: A. H. Halevy Handbook of Flowering. CRC Press Inc., (1) pp. 309-336, 1985
Groose R.W. and Bingham E.T. Variation in plants regenerated form tissue culture of tetraploid alfalfa heterozygous for several traits. Crop Sci 24:655-658, 1984
Hirochika H., Sugimoto K., Otsuki Y. Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl. Acad. Sci. USA 93:7783-7788, 1996
Honma T. and Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525-529, 2001
Hsu H.F., Huang C.H., Chou L.T. Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant and Cell Physiol 44: 783―794, 2003
Irish V.F. and Litt A. Flower development and evolution: Gene duplication, diversification and redeployment. Curr. Opin. Genet. Dev. 15:454-460, 2005
Immink R.G, Angenent G.C. Transcription factors do it together: the how and why of studying protein-protein interactions. Trends Plant Sci. (12):531-4, 2002
Jack T. Molecular and genetic mechanisms of floral control. Plant Cell 16: S1-17, 2004
Kanno A., Hienuki H., Ito T., Nakamura T., Fukuda T., Yun P. Y. Song I. J., Kamimura T., Ochiai T., Yokoyama J., Maki M., Kameya T. The structure and expression of SEPALLATA-like genes in Asparagus species (Asparagaceae) Sex Plant Reprod 19: 133–144, 2006
Kaufmann K., Melzer R., Theigen G. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347: 183–198, 2005
Kim S., Koh J., Yoo M. J., Kong H., Hu Y., Ma H., Soltis P. S., Soltis D. E. Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators. The Plant Journal 43, 724–744, 2005
Koukalova B., Fojtova M., Lim K.Y. Dedifferentiation of tobacco cells is associated with ribosomal RNA gene hypomethylation, increased transcription, and chromatin alterations. Plant Physiol.139: 275-286. 2005
Krizek B.A., and Meyerowitz E.M. Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ-identity proteins. Proc. Natl. Acad. Sci. USA 93: 4063-4070, 1996
Krizek BA, Fletcher JC., Knudson L. Molecular mechanisms of flower development: an armchair guide. Molecular mechanisms of flower development: an armchair guide.. Nat Rev Genet 73: 1-25, 2005
Lamb R.S. and Irish V.F. Functional divergence within the APETALA3/ PISTILLATA floral homeotic gene lineages, Proc. Natl. Acad. Sci. USA 100: 6558-6563, 2003
Larkin P.J. and Scowcroft W.R. Somaclonal variation –a novel source of variability from cell cultures for plant improvement. Thero. Appl. Genet. 60:443-455, 1981
Larkin M.A., Blackshields. G, Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J. and Higgins D.G. Clustal W and Clustal X version 2.0 Bioinformatics 23(21):2947-2948, 2007
Lawton-Rauh A.L., Alvarez-Buylla, E.R., Purugganan, M.D. Molecular evolution of flower development. Trends Ecol. Evol. 15: 144–149, 2000
Munster T., Pahnke J., Di Rosa A., Kim J. T., Martin W., Saedler H. and Theiβen G. Floral homemotic genes were recruited form homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proc. Natl Acad. Sci. USA 94: 2415-2420, 1997
Ma, H. The unfolding drama of flower development: recent results from genetic and molecular analyses. Genes Dev. 8, 745–756, 1994
Ma H, Yanofsky M.F., Meyerowitz E.M. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes De 5: 484―495, 1991
Mouradov A, Glassick T.V., Hamdorf B.A. Family of MADS-box genes expressed early in male and female reproductive structure of monterey pine. Plant Physiol 117: 55―61, 1998
Mena M, Mandel M. A., Lerner D. R. A characterization of the MADS-box gene family in maize. Plant J 8: 845―854, 1995
Moon Y. H., Kang H. G. and Jung J. Y. Determination of the motif responsible for interaction between the rice APETALA1/AGAMOUS- LIKE9 family proteins using a yeast two-hybrid system. Plant Physiol 120: 1193―1204, 1999
Miguel M.T., Veronica L.B., José Luis C.P. and Luis H.E. Improving transformation efficiency of Arabidopsis thaliana by modifying the floral dip method. Plant Molecular Biology Reporter 22: 63–70, 2004
Parenicová L., de Folter S., Kieffer M. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: New openings to the MADS world. Plant Cell15: 1538―155, 2003
Pelaz S., Ditta G.S., Baumann E., Wisman E., and Yanofsky M.F. B and C floral organ identity function require SEPALLATA MADS-box genes. Nature 405: 200-203., 2000
Peshke V.M. and Phillips R.L. Genetic implications of somaclonal variation in plants. Adv. Genet. 30: 41–75, 1992
Petersen K., Didion T., Andersen C. H. MADS-box genes fromperennial ryegrass differentially expressed during transition fromvegetative to reproductive growth. J Plant Physiol161 (4):439―447, 2004
Purugganan, M.D. The MADS-box floral homeotic gene lineages predate the origin of seed plants: phylogenetic and molecular clock estimates. J. Mol. Biol. 45, 392–396, 1997
Purugganan M.D., Rounsley S., Schmidt R.J. and Yanofsky M.F. Molecular evolution of flower development: Diversification of the plant MADS-box regulatory gene family. Genetics 140, 345-356, 1995
Rijpkema A.S., Zethof J., Gerats T. and Vandenbussche M. The Petunia AGL6 gene has a SEPALLATA-like function in floral patterning. The Plant Journal, 2009
Riechmann J.L.,Wang M. and Meyerowitz E.M. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALE3, PISTILATA and AGAMOUS. Nucleic Acid Res. 24;3134-3141, 1996
Riechmann J.L., Krizek B.A. and Meyerowitz E.M. Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity. Mol. Bio. Cell 8:1243-1259, 1997
Riechmann J.L., Krizek B.A. and Meyerowitz E.M. MADS domain proteins in plant development. Biol. Chem. 378:1079-1101, 1997
Rounsley S.D., Ditta G.S., Yanofsky M.F. Diverse roles for MADS box genes in Arabidopsis development. Plant Cell. 7(8):1259-69, 1995
Schwarz-Sommer Z., Huijser P., Nacken W., Saedler H., Sommer H. Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250: 931–936. 1990
Shindo S, Ito M, Ueda K., Characterization of MADS genes in the gymnosperm Gnetum parvifolium and its implication on the evolution of reproductive organs in seed plants. Evol Dev, 1:180―190, 1999
Thien L.B. and Marcks B. G. The floral biology of Arethusa bulbosa, Calopogon tuberosus and Pogonia ophioglossoides (Orchidaceae). Canadian Journal of Botany 23, 19–25, 1972
Theiβen G. Development of floral organ identity: stories form the MADS house. Curr. Opin. Plant Biol. 4: 75-85, 2001
Theißen G., Becker A., Di Rosa A., Kanno A., Kim J.T., Mϋnster T., Winter K.U., Saedler H. A short history of MADS-box genes in plants. Plant Mol. Biol. 42, 115–149, 2000
Tokuhara K. and Mii M. Micropropagation of Phalaenopsis and Doritaenopsis by culturing shoot tips of flower stalk buds. Plant Cell Rep. 13:7-11, 1993
Tsai W.C., Huoh C.S., Chuang M.H., Chen W.H. and Chen H.H. Four DEF-like MADS-box genes displayed distinct floral morphogenetic roles in Phalaenopsis Orchid. Plant Cell Physiol. 45: 831-844, 2004
Tsai W.C., Lee P.F., Chen H.I., Hsiao Y.Y., Wei W.J. and Pan Z.J. Chuang M.H., Kuoh C.S., Chen W.S. and Chen H.H. PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant and Cell Physiology 46:1125-1139, 2005
Tsai W.C., Pan Z.J., Hsiao Y.Y., Jeng M.F., Wu T.F., Chen W.H., Chen H.H.. Interactions of B-class complex proteins involved in tepal development in Phalaenopsis orchid. Plant Cell Physiol. 49(5):814-24. 2008
Tsuchimoto S., Mayama T., Van der Krol A., The whorl-specific action of a Pentunia class B floral homeotic gene. Genes to Cells 5 (2): 89―992, 2000
Van Der Pijl L. Pollination mechanisms in orchids. In reproductive biology and taxonomy of vascular plants, 9th Conference report of the Botanical society of the British Isles (ed. J. G. Hawkes), Pergamon Press, pp. 61–75,
Vogel S. Pilzmueckenblumen als Pilzmimeten. Flora 167, 329–398, 1978
Yao J. L., Dong Y. H., Kvarnheden A. Seven MADS-box genes in apple are expressed in different parts of the fruit. J Am Soc Hortic Sci 124: 8―13, 1999
Zahn L.N., Feng B. and Ma H. Beyond the ABC-model: Regulation of floral homeotic genes. In Developmental Genetics of the Flower: Advances in Botanical Research 44:163-207, 2006
Zhao T., Ni Z., Dai Y. Characterization and expression of 42 MADS-box genes in wheat (Triticum aestivum L.). Mol Genet Genomics 276(4): 334―350, 2006