| 研究生: |
林碩彥 Lin, Shuo-Yen |
|---|---|
| 論文名稱: |
室溫建構之複合層氧化鋅奈米結構陽極應用於可撓式染料敏化太陽能電池之研究 Room Temperature Construction of Hierarchical ZnO Nanostructured Anodes for Flexible Dye-sensitized Solar Cells |
| 指導教授: |
吳季珍
Wu, Jih-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | 氧化鋅 、奈米顆粒複合結構 、室溫化學浴處理 、光散射顆粒 、可撓式電極 、染料敏化太陽能電池 、紫質染料 |
| 外文關鍵詞: | Room-Temperature Chemical Bath Deposition, ZnO Nanostructures Template, Plastic Substrates, Flexible Dye-Sensitized Solar Cells |
| 相關次數: | 點閱:126 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究以室溫化學浴法將複合層氧化鋅奈米結構建構於ITO-PET導電塑膠基板,應用於可撓式染料敏化太陽能電池之光陽極材料。以滴鍍法將粒徑約20 nm之氧化鋅顆粒沉積於可撓式導電基板上為模板,利用室溫化學浴法於其表面成長厚度約5 nm之氧化鋅殼層結構。此全室溫條件建構之氧化鋅奈米殼層/顆粒結構,以D149敏化後之光陽極製作之可撓式染料敏化太陽能電池,在未經高溫燒結與機械高壓處理下,可達到4.11%之效率。藉由研究太陽能電池電子傳輸與再結合之特性,確認此氧化鋅殼層結構提供電子快速傳導之通道,故可大幅提升氧化鋅結構之電子收集效率。為了進一步提高光陽極結構於長波長光之光電流表現,本研究塗佈氧化鋅光散射顆粒於奈米殼層/顆粒結構上,並再次進行室溫化學浴處理,使氧化鋅光陽極結構之染料吸附量上升。同時發揮散射顆粒之特點,促進長波長光之收集,使電流提升。以此氧化鋅光散射顆粒/奈米殼層/顆粒複合層結構為光陽極,製作之可撓式染料敏化太陽能電池,其光電流值與氧化鋅奈米殼層/顆粒結構電池相比,提高近25%,效率值也提升30%,達5.16%之高效率表現。
此外,為了提升可撓式染料敏化太陽能電池於近紅外光之光收集效率,本研究亦使用紫質染料YD2-oC8敏化氧化鋅奈米結構之光陽極。觀察太陽能電池之光電轉換效率量測,可發現YD2-oC8染料能將650 ~ 700 nm波長之光電轉換效率提升。但由於具有高分子量之YD2-oC8容易於氧化鋅表面產生堆疊,導致染料分子於其上之吸附量下降。因此由氧化鋅奈米殼層/顆粒結構光陽極與氧化鋅光散射顆粒/奈米殼層/顆粒結構所建構之可撓式染料敏化太陽能電池,轉換效率僅分別達到1.89%與2.04%。故於紫質染料溶液之成份調控,仍有很大的改善空間。
Room Temperature Construction of Hierarchical ZnO Nanostructured Anodes
for Flexible Dye-sensitized Solar Cells
Shuo-Yen Lin
Jih-Jen Wu
Department of Chemical Engineering, National Cheng Kung University
SUMMARY
A notable efficiency of 5.16% is achieved in the flexible dye-sensitized solar cell (DSSC) using the ZnO particle-templated nanostructured anode facilely fabricated on the indium tin oxide (ITO) coated-polyethylene terephthalate (PET) substrate. Two ZnO particle layers are simply drop-cast on the ITO-PET substrate to respectively serve as the templates for the room-temperature (RT) chemical bath depositions of main-matrix and light-scattering portions of the flexible ZnO nanostructured anode. Dynamics of electron transport and recombination measurements indicate that an efficient electron collection is performed in the ZnO nanostructured anode fabricated free of high-temperature treatment and mechanical compression.
Key words: Room-Temperature Chemical Bath Deposition, ZnO Nanostructures Template, Plastic Substrates, Flexible Dye-Sensitized Solar Cells
INTRODUCTION
Dye-sensitized solar cells (DSSCs) fabricated on flexible and light-weight conducting plastic substrates have attracted considerable interests because they are one of the promising renewable and mobile power sources for portable electronic devices. The high-temperature annealed TiO2 nanoparticles (NPs) films on the transparent conducting oxide (TCO) coated glasses are typically employed to be anodes in the rigid DSSCs. An efficient electron transport pathway through the sintered NP film to TCO is curcial for achieving an efficient DSSC. Therefore, a cirtical challenge of the low-temperature preparation of TiO2 anodes on the conducting plastic substrates restricts the plastic-substrate DSSCs to the relative low conversion efficiencies.
With a similar energy band gap, ZnO has been employed to be an alternative of TiO2 for DSSC anodes. However, the efficienies of the ZnO DSSCs are always inferior to those of TiO2 DSSCs, which is mainly attributed to no efficient dye specially designed for ZnO anodes. Nevertheless, with the superior properties of high electron mobility, anisotropic growth behavior, and low crystallization temperature, ZnO is a very promising material to be the flexible DSSC anode.
In this work, a facile route is developed to fabricate high-performance flexible ZnO DSSC anodes. A ZnO particle template is drop-cast on the ITO-PET substrate, instead of the time-consuming grown NW-array template, followed by the RT growth of ZnO nanostructures to construct the flexible ZnO nanostructred anode. A notable efficiency of 5.16% is attained in the flexible DSSC with the RT-grown ZnO particle-templated nanostructured anode on the ITO-PET substrate.
MATERIALS AND METHODS
The ZnO nanostructured anodes were grown on the particle-templated ITO-PET substrates using RT CBD. A blocking layer composed of ZnO NPs with a diameter of ~5 nm was spin-coated on the ITO-PET substrate. The particle template composed of two ZnO particle layers was then drop cast on the blocking layer. The first ZnO NP layer with the particle size of 20 nm (Alfa Aesar, 99%) was prepared by the drop casting of a butanolic solution of ZnO NPs (0.015g/3ml) on the blocking layer. Another ZnO particle film was further drop cast on the ZnO NP layer using an ethanolic solution of ZnO particles (0.1g/10ml) with sizes of 200-500 nm. The ZnO particles were hydrothermally synthesized using an aqueous solution of zinc acetate and NaOH. The ZnO particle templates are heated at 50 oC for 2hr for solvent removal. ZnO nanostructures were constructed on the template by immersing the templated ITO-PET substrate into the stirred aqueous solution of 0.062 M zinc acetate and 0.5 M NaOH at RT for 3.5 min.
Dye adsorption was carried out by immersing the anode in a 0.5 mM acetonitrile/t-butanol (1:1) solution of D149 at RT for 1 h. The sensitized electrode and platinized ITO/PET counter electrode were sandwiched together with 25-m-thick hot-melt spacers (SX 1170-25, Solaronix SA). Liquid electrolyte solutions composed of 0.5 M tetrapropylammonium iodide (TPAI) and 50 mM I2 in a 1:4 volume ratio of ethylene carbonate and acetonitrile was employed for the D149-sensitized DSSCs. The cells are fully sealed with cyanoacrylate glue. A mask on the PET substrate side of photoanode was used to create an exposed area of 0.16 cm2 for all cells.
RESULTS AND DISCUSSION
Flexible DSSCs are fabricated using the ZnO NP, ZnO RT-M, and ZnO RT-MS anodes constructed on ITO-PET substrates. Photovoltaic performances of these flexible D149-sensitized DSSCs are shown in Figure 1a. For comparison, the photocurrent density (J)-voltage (V) characteristic of the DSSC with ZnO RT-M anode on ITO-glass (named ZnO RT-M-g DSSC hereafter) is also demonstrated in the figure. The photovoltaic properties of these DSSCs are listed in Table 1. It shows that the ZnO NP DSSC, in which the NPs in the anode are not well-connected, possesses an efficiency of 1.84%. With the RT-grown ZnO nanostructures on the NP template, the performance of the flexible ZnO RT-M DSSC is significantly superior to that of the ZnO NP DSSC. More than 2-fold enhancements of the short-circuit photocurrent density (Jsc) and therefore the efficiency are attained. An efficiency of 4.11% is measured in the flexible DSSC with a 5-m-thick D149-sensitized ZnO RT-M anode. Moreover, as shown in Figure 1a and Table 1, the efficiency of the flexible ZnO RT-M DSSC is comparable to that of the ZnO RT-M-g DSSC. As the ZnO NP templates for the RT growth of the ZnO nanostructured anodes are fabricated on ITO substrates at a temperature of 50oC, similar photovoltaic performances can therefore be attained in both flexible and rigid DSSCs without the high-temperature post-treatment and mechanical compression.
With the additional light-scattering portion in the anode, the flexible ZnO RT-MS DSSC shows a 25% enrichment of Jsc compared to the ZnO RT-M DSSC. A remarkable efficiency of 5.16% is achieved in the flexible ZnO RT-MS DSSC with the anode fabricated on plastic substrate without mechanical compression, as shown in Figure 1a and Table 1. Without the time-consuming work, the high-performance RT-grown ZnO DSSC anodes have been realized on the particle templates which are facilely constructed on ITO-PET substrates by the drop casting method. The results demonstrate the outperformed characteristics of the RT-grown ZnO nanostructured anodes on the templated ITO-PET substrates for use in flexible DSSCs.
Figure 1b shows the IPCE spectra of the flexible ZnO NP, ZnO RT-M, and ZnO RT-MS DSSCs. Compared to the ZnO NP DSSC, the IPCE values are significantly increased in the ZnO RT-M DSSC. It is ascribed to the formation of the RT-grown nanostructured anode with the suitable surface for dye adsorption and superior electron transport properties (the detail of which will be discussed later). The increase of the light scattering ability due to the development of aggregate morphology after RTCBD also contributes to the enhancement of the IPCE values of the ZnO RT-M DSSC. Further increases of the IPCE values in the wavelength range of 480-700 nm are measured in the ZnO RT-MS DSSC although the light harvesting of the flexible DSSC is restricted by the ITO-PET substrate with transmittances of 70-85%, as shown in Figure 1b. Moreover, significant enrichments of the IPCE values in the long wavelength range are observed in the ZnO RT-MS DSSC, which is attributed to the addition of the light scattering portion in the flexible ZnO DSSC anode.
1. Oregan, B.; Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737-740.
2. Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.; Yeh, C. Y.; Zakeeruddin, S. M.; Gratzel, M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 2011, 334, 629-634.
3. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Solar cell efficiency tables (version 43). Prog Photovoltaics 2014, 22, 1-9.
4. Ellmer, K. Transparent conductive zinc oxide. Springer 2008, Vol. 104.
5. Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003-1009.
6. Tsukazaki, A.; Ohtomo, A.; Onuma, T.; Ohtani, M.; Makino, T.; Sumiya, M.; Ohtani, K.; Chichibu, S. F.; Fuke, S.; Segawa, Y.; Ohno, H.; Koinuma, H.; Kawasaki, M. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat. Mater. 2004, 4, 42-46.
7. Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897-1899.
8. Wan, Q.; Li, Q. H.; Chen, Y. J.; Wang, T. H.; He, X. L.; Li, J. P.; Lin, C. L. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 2004, 84, 3654-3656.
9. Sheng, X.; Yong, Q.; Chen, X.; Yaguang, W.; Rusen, Y.; Zhong Lin, W. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366-73.
10. Hoffman, R. L.; Norris, B. J.; Wager, J. F. ZnO-based transparent thin-film transistors. Appl. Phys. Lett. 2003, 82, 733-735.
11. Zhang, Q.; Dandeneau, C. S.; Zhou, X.; Cao, G. ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 2009, 21, 4087-4108.
12. Listorti, A.; O'Regan, B.; Durrant, J. R. Electron transfer dynamics in dye-sensitized solar cells. Chem. Mat. 2011, 23, 3381-3399.
13. Gratzel, M. Photoelectrochemical cells. Nature 2001, 414, 338-344.
14. Benkstein, K. D.; Kopidakis, N.; van de Lagemaat, J.; Frank, A. J. Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells. J. Phys. Chem. B 2003, 107, 7759-7767.
15. Bisquert, J.; Cahen, D.; Hodes, G.; Ruhle, S.; Zaban, A. Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells. J. Phys. Chem. B 2004, 108, 8106-8118.
16. Nelson, J.; Chandler, R. E. Random walk models of charge transfer and transport in dye sensitized systems. Coord. Chem. Rev. 2004, 248, 1181-1194.
17. Yoshida, T.; Zhang, J.; Komatsu, D.; Sawatani, S.; Minoura, H.; Pauporte, T.; Lincot, D.; Oekermann, T.; Schlettwein, D.; Tada, H.; Wohrle, D.; Funabiki, K.; Matsui, M.; Miura, H.; Yanagi, H. Electrodeposition of inorganic/organic hybrid thin films. Adv. Funct. Mater. 2009, 19, 17-43.
18. Saito, M.; Fujihara, S. Large photocurrent generation in dye-sensitized ZnO solar cells. Energy Environ. Sci 2008, 1, 280-283.
19. Guerin, V. M.; Magne, C.; Pauporte, T.; Le Bahers, T.; Rathousky, J. Electrodeposited nanoporous versus nanoparticulate ZnO films of similar roughness for dye-sensitized solar cell applications. ACS Appl. Mater. Interfaces 2010, 2, 3677-3685.
20. Chen, L.-Y.; Yin, Y.-T. The influence of length of one-dimensional photoanode on the performance of dye-sensitized solar cells. J. Mater. Chem. 2012, 22, 24591-24596.
21. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455-459.
22. Xu, C.; Gao, D. Two-stage hydrothermal growth of long ZnO nanowires for efficient TiO2 nanotube-based dye-sensitized solar cells. J. Phys. Chem. C 2012, 116, 7236-7241.
23. Xu, C.; Wu, J.; Desai, U. V.; Gao, D. Multilayer assembly of nanowire arrays for dye-sensitized solar cells. J. Am. Chem. Soc. 2011, 133, 8122-8125.
24. Hosono, E.; Fujihara, S.; Honna, I.; Zhou, H. S. The fabrication of an upright-standing zinc oxide nanosheet for use in dye-sensitized solar cells. Adv. Mater. 2005, 17, 2091-2094
25. Lin, C.-Y.; Lai, Y.-H.; Chen, H.-W.; Chen, J.-G.; Kung, C.-W.; Vittal, R.; Ho, K.-C. Highly efficient dye-sensitized solar cell with a ZnO nanosheet-based photoanode. Energy Environ. Sci 2011, 4, 3448-3455.
26. Shi, Y.; Zhu, C.; Wang, L.; Li, W.; Cheng, C.; Ho, K. M.; Fung, K. K.; Wang, N. Optimizing nanosheet-based ZnO hierarchical structure through ultrasonic-assisted precipitation for remarkable photovoltaic enhancement in quasi-solid dye-sensitized solar cells. J. Mater. Chem. 2012, 22, 13097-13103.
27. Kung, C.-W.; Chen, H.-W.; Lin, C.-Y.; Lai, Y.-H.; Vittal, R.; Ho, K.-C. Electrochemical synthesis of a double-layer film of ZnO nanosheets/nanoparticles and its application for dye-sensitized solar cells. Prog Photovoltaics 2014, 22, 440-451.
28. Hui, D.; Yong, Z.; Liang, C.; Binglei, G.; Aidong, L.; Jianguo, L.; Tao, Y.; Zhigang, Z. Porous ZnO nanosheet arrays constructed on weaved metal wire for flexible dye-sensitized solar cells. Nanoscale 2013, 5, 5102-5108.
29. Prabakar, K.; Son, M.; Kim, W. Y.; Kim, H. TiO2 thin film encapsulated ZnO nanorod and nanoflower dye sensitized solar cells. Mater. Chem. Phys. 2011, 125, 12-14.
30. Jiang, C. Y.; Sun, X. W.; Lo, G. Q.; Kwong, D. L.; Wang, J. X. Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Appl. Phys. Lett. 2007, 90.
31. Chang, G.-J.; Lin, S.-Y.; Wu, J.-J. Room-temperature chemical integration of ZnO nanoarchitectures on plastic substrates for flexible dye-sensitized solar cells. Nanoscale 2014, 6, 1329-1334.
32. Jiang, W.-T.; Wu, C.-T.; Sung, Y.-H.; Wu, J.-J. Room-Temperature fast construction of outperformed ZnO nanoarchitectures on nanowire-array templates for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2013, 5, 911-917.
33. Ko, S. H.; Lee, D.; Kang, H. W.; Nam, K. H.; Yeo, J. Y.; Hong, S. J.; Grigoropoulos, C. P.; Sung, H. J. Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett. 2011, 11, 666-671.
34. Chen, W.; Qiu, Y.; Yang, S. A new ZnO nanotetrapods/SnO2 nanoparticles composite photoanode for high efficiency flexible dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2010, 12, 9494-9501.
35. Chiu, W.-H.; Lee, C.-H.; Cheng, H.-M.; Lin, H.-F.; Liao, S.-C.; Wu, J.-M.; Hsieh, W.-F. Efficient electron transport in tetrapod-like ZnO metal-free dye-sensitized solar cells. Energy Environ. Sci 2009, 2, 694-698.
36. McCune, M.; Zhang, W.; Deng, Y. High efficiency dye-sensitized solar cells based on three-dimensional multilayered ZnO nanowire arrays with "caterpillarlike" structure. Nano Lett. 2012, 12, 3656-3662.
37. Shi, Y.; Dong, H.; Wang, L.; Zhan, C.; Gao, R.; Qiu, Y. Controlled synthesis of ZnO spindles and fabrication of composite photoanodes at low temperature for quasi-solid state dye-sensitized solar cells. J. Mater. Chem. 2011, 21, 3183-3188.
38. Yantao, S.; Chun, Z.; Liduo, W.; Beibei, M.; Rui, G.; Yifeng, Z.; Yong, Q. Polydisperse spindle-shaped ZnO particles with their packing micropores in the photoanode for highly efficient quasi-solid dye-sensitized solar cells. Adv. Funct. Mater. 2010, 20, 437-444.
39. Xu, F.; Sun, L. Solution-derived ZnO nanostructures for photoanodes of dye-sensitized solar cells. Energy Environ. Sci 2011, 4, 818-841.
40. Gonzalez-Valls, I.; Lira-Cantu, M. Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy Environ. Sci 2009, 2, 19-34.
41. Anta, J. A.; Guillen, E.; Tena-Zaera, R. ZnO-based dye-sensitized solar cells. J. Phys. Chem. C 2012, 116, 11413-11425.
42. Zhang, Q.; Chou, T. R.; Russo, B.; Jenekhe, S. A.; Cao, G. Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. Angew. Chem.-Int. Edit. 2008, 47, 2402-2406.
43. Memarian, N.; Concina, I.; Braga, A.; Rozati, S. M.; Vomiero, A.; Sberveglieri, G. Hierarchically Assembled ZnO Nanocrystallites for High-Efficiency Dye-Sensitized Solar Cells. Angew. Chem.-Int. Edit. 2011, 50, 12321-12325.
44. Ku, C.-H.; Wu, J.-J. Chemical bath deposition of ZnO nanowire-nanoparticle composite electrodes for use in dye-sensitized solar cells. Nanotechnology 2007, 18.
45. Wu, C.-T.; Wu, J.-J. Room-temperature synthesis of hierarchical nanostructures on ZnO nanowire anodes for dye-sensitized solar cells. J. Mater. Chem. 2011, 21, 13605-13610.
46. Dong, Z. H.; Lai, X. Y.; Halpert, J. E.; Yang, N. L.; Yi, L. X.; Zhai, J.; Wang, D.; Tang, Z. Y.; Jiang, L. Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency. Adv. Mater. 2012, 24, 1046-1049.
47. Li, Z.; Lai, X.; Wang, H.; Mao, D.; Xing, C.; Wang, D. General synthesis of homogeneous hollow core-shell ferrite microspheres. J. Phys. Chem. C 2009, 113, 2792-2797.
48. Lai, X.; Li, J.; Korgel, B. A.; Dong, Z.; Li, Z.; Su, F.; Du, J.; Wang, D. General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew. Chem.-Int. Edit. 2011, 50, 2738-2741.
49. Zheng, Y.-Z.; Tao, X.; Wang, L.-X.; Xu, H.; Hou, Q.; Zhou, W.-L.; Chen, J.-F. Novel ZnO-based film with double light-scattering layers as photoelectrodes for enhanced efficiency in dye-sensitized solar cells. Chem. Mat. 2010, 22, 928-934.
50. Ito, S.; Ha, N.-L. C.; Rothenberger, G.; Liska, P.; Comte, P.; Zakeeruddin, S. M.; Pechy, P.; Nazeeruddin, M. K.; Graetzel, M. High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. Chem. Commun. 2006, 4004-4006.
51. Arakawa, H.; Yamaguchi, T.; Sutou, T.; Koishi, Y.; Tobe, N.; Matsumoto, D.; Nagai, T. Efficient dye-sensitized solar cell sub-modules. Curr. Appl. Phys. 2010, 10, S157-S160.
52. Zhang, J.; He, M.; Fu, N.; Li, J.; Yin, X. Facile one-step synthesis of highly branched ZnO nanostructures on titanium foil for flexible dye-sensitized solar cells. Nanoscale 2014, 6, 4211-4216.
53. Kim, J. J.; Kim, K. S.; Jung, G. Y. Fabrication of flexible dye-sensitised solar cells with photoanodes composed of periodically aligned single crystalline vertical ZnO NRs by utilising a direct metal transfer method. J. Mater. Chem. 2011, 21, 7730-7735.
54. Li, L.-L.; Diau, E. W.-G. Porphyrin-sensitized solar cells. Chem. Soc. Rev. 2013, 42, 291-304.
55. Bessho, T.; Zakeeruddin, S. M.; Yeh, C.-Y.; Diau, E. W.-G.; Graetzel, M. Highly Efficient Mesoscopic Dye-Sensitized Solar Cells Based on Donor-Acceptor-Substituted Porphyrins. Angew. Chem.-Int. Edit. 2010, 49, 6646-6649.
56. Luo, J.; Xu, M.; Li, R.; Huang, K.-W.; Jiang, C.; Qi, Q.; Zeng, W.; Zhang, J.; Chi, C.; Wang, P.; Wu, J. N-annulated perylene as an efficient electron donor for porphyrin-based dyes: enhanced light-harvesting ability and high-efficiency Co(II/III)-based dye-sensitized solar cells. J. Am. Chem. Soc. 2014, 136, 265-272.
57. Wu, H.-P.; Ou, Z.-W.; Pan, T.-Y.; Lan, C.-M.; Huang, W.-K.; Lee, H.-W.; Reddy, N. M.; Chen, C.-T.; Chao, W.-S.; Yeh, C.-Y.; Diau, E. W.-G. Molecular engineering of cocktail co-sensitization for efficient panchromatic porphyrin-sensitized solar cells. Energy Environ. Sci 2012, 5, 9843-9848.
58. Kern, R.; Sastrawan, R.; Ferber, J.; Stangl, R.; Luther, J. Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. Electrochim. Acta 2002, 47, 4213-4225.
59. Bisquert, J. Theory of the impedance of electron diffusion and recombination in a thin layer. J. Phys. Chem. B 2002, 106, 325-333.
60. Fabregat-Santiago, F.; Bisquert, J.; Garcia-Belmonte, G.; Boschloo, G.; Hagfeldt, A. Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Sol. Energy Mater. Sol. Cells 2005, 87, 117-131.
61. Adachi, M.; Sakamoto, M.; Jiu, J.; Ogata, Y.; Isoda, S. Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. J. Phys. Chem. B 2006, 110, 13872-13880.
62. Ku, C.-H.; Wu, J.-J. Electron transport properties in ZnO nanowire array/nanoparticle composite dye-sensitized solar cells. Appl. Phys. Lett. 2007, 91.
63. Oekermann, T.; Yoshida, T.; Minoura, H.; Wijayantha, K. G. U.; Peter, L. M. Electron transport and back reaction in electrochemically self-assembled nanoporous ZnO/dye hybrid films. J. Phys. Chem. B 2004, 108, 8364-8370.
64. Ito, S.; Zakeeruddin, S. M.; Humphry-Baker, R.; Liska, P.; Charvet, R.; Comte, P.; Nazeeruddin, M. K.; Pechy, P.; Takata, M.; Miura, H.; Uchida, S.; Gratzel, M. High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness. Adv. Mater. 2006, 18, 1202-1205.
65. Weerasinghe, H. C.; Huang, F.; Cheng, Y.-B. Fabrication of flexible dye sensitized solar cells on plastic substrates. Nano Energy 2013, 2, 174-189.
66. Horiuchi, H.; Katoh, R.; Hara, K.; Yanagida, M.; Murata, S.; Arakawa, H.; Tachiya, M. Electron injection efficiency from excited N3 into nanocrystalline ZnO films: Effect of (N3-Zn2+) aggregate formation. J. Phys. Chem. B 2003, 107, 2570-2574.
67. Anderson, N. A.; Ai, X.; Lian, T. Q. Electron injection dynamics from Ru polypyridyl complexes to ZnO nanocrystalline thin films. J. Phys. Chem. B 2003, 107, 14414-14421.
68. Ito, S.; Miura, H.; Uchida, S.; Takata, M.; Sumioka, K.; Liska, P.; Comte, P.; Pechy, P.; Graetzel, M. High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chem. Commun. 2008, 5194-5196.
69. Salvatori, P.; Marotta, G.; Cinti, A.; Anselmi, C.; Mosconi, E.; De Angelis, F. Supramolecular interactions of chenodeoxycholic acid increase the efficiency of dye-sensitized solar cells based on a cobalt electrolyte. J. Phys. Chem. C 2013, 117, 3874-3887.
70. Lu, H.-P.; Tsai, C.-Y.; Yen, W.-N.; Hsieh, C.-P.; Lee, C.-W.; Yeh, C.-Y.; Diau, E. W.-G. Control of dye aggregation and electron injection for highly efficient porphyrin sensitizers adsorbed on semiconductor films with varying ratios of coadsorbate. J. Phys. Chem. C 2009, 113, 20990-20997.
校內:2024-12-31公開