| 研究生: |
翁淑文 Weng, Shu-Wen |
|---|---|
| 論文名稱: |
奈米共振腔輔助高效能電漿子超穎介面 Nanocavity-assisted high-performance plasmonic metasurfaces |
| 指導教授: |
吳品頡
Wu, Pin-Chieh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 金屬超穎介面 、半波片 、偏振轉換 、光束偏轉 、超穎透鏡 |
| 外文關鍵詞: | Plasmonic metasurface, Half-wave plate, Polarization conversion, beam deflector, metalens |
| 相關次數: | 點閱:102 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文致力於研究高效率穿透式電漿子超穎介面,期望可以打破金屬高焦耳損耗的物理特性,在光學頻段上實現高穿透且製程容易的超穎介面,主要利用電子束多次對準曝光技術以及其他相關半導體奈米製程技術,在玻璃基板上製作具有入射光偏振選擇性、高效能偏振轉換且寬頻特性的三層金屬結構於近紅外波段中,實現於各式應用的超穎光學(metaoptics)元件。我們將雷射共振腔的概念引入電漿子超穎介面中,並運用光柵結構的設計方法,製作以液態玻璃覆蓋三層金屬的單元結構,利用光柵結構的偏振選擇性和中間層之奈米天線與入射光偏振共振之下進行偏振轉換,並透過奈米共振腔的機制使電磁波在多層結構中來回進行多次交互作用,以達到在近紅外波段中擁有高正交偏振轉換效率的電漿子超穎介面。接著,我們將所設計之電漿子超穎介面的單元結構製作成三種不同的光學元件,分別是半波片、光束偏折超穎介面和聚焦超穎透鏡。上述三種光學元件在近紅外波段中皆有良好偏振轉換效率,尤其是半波片和光束偏折超穎介面,在數值模擬的結果中設計波長為1550奈米的偏振轉換效率超過70%。
In this thesis, we were committed to challenging the physic property of high energy consumption for achieving highly transmissive plasmonic metasurfaces. We proposed a tri-layered plasmonic system that can function as a half-wave plate with a state-of-the-art efficiency in transmission. The nanocavity-assisted plasmonic metasurface composed of two orthogonal plasmonic gratings sandwiching with a layer of nanoantennas, in which each layer is spatially separated with spin on glass (SOG). To experimentally realize the proposed metasurface, the e-beam lithography combined with the alignment technique is implemented. Thanks to the design of tri-layered nanostructures, the metasurface act as a nanocavity so that the transmission efficiency can be significantly boosted. As the proof-of-concept, we demonstrated a beam deflector and a metalens in the near-infrared.
[1] C. Zhang, J. P. Hu, Y. G. Dong, A. J. Zeng, H. J. Huang, and C. H. Wang, "High efficiency all-dielectric pixelated metasurface for near-infrared full-Stokes polarization detection," Photonics Res. 9, 583-589 (2021).
[2] Y. Intaravanne, and X. Z. Chen, "Recent advances in optical metasurfaces for polarization detection and engineered polarization profiles," Nanophotonics 9, 1003-1014 (2020).
[3] E. Tseng, S. Colburn, J. Whitehead, L. C. Huang, S. H. Baek, A. Majumdar, and F. Heide, "Neural nano-optics for high-quality thin lens imaging," Nat. Commun. 12, 7 (2021).
[4] L. L. Li, H. X. Ruan, C. Liu, Y. Li, Y. Shuang, A. Alu, C. W. Qiu, and T. J. Cui, "Machine-learning reprogrammable metasurface imager," Nat. Commun. 10, 8 (2019).
[5] Q. Ma, G. D. Bai, H. B. Jing, C. Yang, L. L. Li, and T. J. Cui, "Smart metasurface with self-adaptively reprogrammable functions," Light-Sci. Appl. 8, 12 (2019).
[6] P. Georgi, Q. S. Wei, B. Sain, C. Schlickriede, Y. T. Wang, L. L. Huang, and T. Zentgraf, "Optical secret sharing with cascaded metasurface holography," Sci. Adv. 7, 5 (2021).
[7] W. J. Joo, J. Kyoung, M. Esfandyarpour, S. H. Lee, H. Koo, S. Song, Y. N. Kwon, S. H. Song, J. C. Bae, A. Jo, M. J. Kwon, S. H. Han, S. H. Kim, S. Hwang, and M. L. Brongersma, "Metasurface-driven OLED displays beyond 10,000 pixels per inch," Science 370, 459 (2020).
[8] X. H. Luo, Y. Q. Hu, X. Li, Y. T. Jiang, Y. S. Wang, P. Dai, Q. Liu, Z. W. Shu, and H. G. Duan, "Integrated metasurfaces with microprints and helicity-multiplexed holograms for real-time optical encryption," Adv. Opt. Mater. 8, 9 (2020).
[9] Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk'yanchuk, and A. I. Kuznetsov, "High-transmission dielectric metasurface with 2 phase control at visible wavelengths," Laser Photon. Rev. 9, 412-418 (2015).
[10] J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[11] J. B. Pendry, and D. R. Smith, "Reversing light with negative refraction," Phys. Today 57, 37-43 (2004).
[12] S. M. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. B. Xu, C. H. Kuan, T. Li, S. N. Zhu, and D. P. Tsai, "Broadband achromatic optical metasurface devices," Nat. Commun. 8, 9 (2017).
[13] M. Fernandez-Suarez, and A. Y. Ting, "Fluorescent probes for super-resolution imaging in living cells," Nat. Rev. Mol. Cell Biol. 9, 929-943 (2008).
[14] Y. M. Yang, W. Y. Wang, P. Moitra, Kravchenko, II, D. P. Briggs, and J. Valentine, "Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation," Nano Lett. 14, 1394-1399 (2014).
[15] H. L. Zhu, S. W. Cheung, K. L. Chung, and T. I. Yuk, "Linear-to-circular polarization conversion using metasurface," IEEE Trans. Antennas Propag. 61, 4615-4623 (2013).
[16] Y. Y. Yuan, K. Zhang, B. Ratni, Q. H. Song, X. M. Ding, Q. Wu, S. N. Burokur, and P. Genevet, "Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces," Nat. Commun. 11, 9 (2020).
[17] P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, "Versatile polarization generation with an aluminum plasmonic metasurface," Nano Lett. 17, 445-452 (2017).
[18] G. Kim, S. Kim, H. Kim, J. Lee, T. Badloe, and J. Rho, "Metasurface-empowered spectral and spatial light modulation for disruptive holographic displays," Nanoscale 14, 4380-4410 (2022).
[19] J. B. Pendry, A. Holden, W. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773 (1996).
[20] J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, "Low frequency plasmons in thin-wire structures," Journal of Physics: Condensed Matter 10, 4785 (1998).
[21] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE transactions on microwave theory and techniques 47, 2075-2084 (1999).
[22] D. Sievenpiper, M. Sickmiller, and E. Yablonovitch, "3D wire mesh photonic crystals," Phys. Rev. Lett. 76, 2480 (1996).
[23] D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000).
[24] D. R. Smith, D. Vier, N. Kroll, and S. Schultz, "Direct calculation of permeability and permittivity for a left-handed metamaterial," Applied Physics Letters 77, 2246-2248 (2000).
[25] M. Caiazzo, S. Maci, and N. Engheta, "A metamaterial surface for compact cavity resonators," IEEE Antennas and Wireless Propagation Letters 3, 261-264 (2004).
[26] R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[27] D. R. Smith, J. B. Pendry, and M. C. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004).
[28] D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, "Two-dimensional beam steering using an electrically tunable impedance surface," IEEE Trans. Antennas Propag. 51, 2713-2722 (2003).
[29] R. W. Wood, "Anomalous diffraction gratings," Phys. Rev. 48, 928 (1935).
[30] J. Jana, M. Ganguly, and T. Pal, "Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application," RSC Advances 6, 86174-86211 (2016).
[31] D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, and K. W. Cheah, "Helicity multiplexed broadband metasurface holograms," Nat. Commun. 6, 1-7 (2015).
[32] J. P. Fan, Y. Z. Cheng, and B. He, "High-efficiency ultrathin terahertz geometric metasurface for full-space wavefront manipulation at two frequencies," J. Phys. D-Appl. Phys. 54, 11 (2021).
[33] J. P. Fan, and Y. Z. Cheng, "Broadband high-efficiency cross-polarization conversion and multi-functional wavefront manipulation based on chiral structure metasurface for terahertz wave," J. Phys. D-Appl. Phys. 53, 10 (2020).
[34] C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, "High performance bianisotropic metasurfaces: asymmetric transmission of light," Phys. Rev. Lett. 113, 5 (2014).
[35] L. Schulz, "The optical constants of silver, gold, copper, and aluminum. I. The absorption coefficient k," JOSA 44, 357-362 (1954).
[36] E. Britannica, "Encyclopædia britannica," Chicago: University of Chicago, (1993).
[37] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: generalized laws of reflection and refraction," Science 334, 333-337 (2011).
[38] H. H. Hsiao, C. H. Chu, and D. P. Tsai, "Fundamentals and applications of metasurfaces," Small Methods 1, 1600064 (2017).
[39] A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, "Planar photonics with metasurfaces," Science 339, 1232009 (2013).
[40] S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, and G.-Y. Guo, "High-efficiency broadband anomalous reflection by gradient meta-surfaces," Nano Lett. 12, 6223-6229 (2012).
[41] M. Kang, T. Feng, H.-T. Wang, and J. Li, "Wave front engineering from an array of thin aperture antennas," Opt. Express 20, 15882-15890 (2012).
[42] M. Khorasaninejad, and F. Capasso, "Metalenses: versatile multifunctional photonic components," Science 358, eaam8100 (2017).
[43] Laurell Technologies Corporation, "Spin coater," https://cmnst-cfc.ncku.edu.tw/var/file/197/1197/img/1759/WS-650-23NPP-spin-coater-brochure.pdf.
[44] U. Ali, K. J. B. Abd Karim, and N. A. Buang, "A review of the properties and applications of poly methyl methacrylate (PMMA)," Polym. Rev. 55, 678-705 (2015).
[45] Microchem Laboratory, "PMMA," https://kayakuam.com/wp-content/uploads/2019/09/PMMA_Data_Sheet.pdf.
[46] R. J. Peterson, "Literature review of spin on glass," (2016).
[47] C. Chiang, and D. B. Fraser, "Understanding of spin-on-glass (SOG) properties from their molecular structure," Proceedings., Sixth International IEEE VLSI Multilevel Interconnection Conference, 397-403(IEEE1989).
[48] Desert Silicon, "Spin-on glass," http://desertsilicon.com/wp-content/uploads/NDG-2000.pdf.
[49] NKT Photonics A/S, "Laser," https://www.nktphotonics.com/.
[50] F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to optics, Cambridge University Press, (2017).