| 研究生: |
陳建泰 Chen, Chien-Tai |
|---|---|
| 論文名稱: |
利用落水頭入滲推估不同深度之水力傳導係數 Use of Falling-Head Infiltration to Estimate Hydraulic Conductivity at Various Depths |
| 指導教授: |
徐國錦
Hsu, Kuo-Chin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 連續落水頭入滲試驗 、水力傳導係數 、等量潮濕鋒到達時間 |
| 外文關鍵詞: | multi-step falling-head infiltration, hydraulic conductivity, effective arrival time of the wetting front |
| 相關次數: | 點閱:107 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統入滲試驗方法主要量測地表單一深度下之均質土壤飽和水力傳導係數(Ks),本研究提出之連續落水頭入滲試驗(MSFIT),以一維飽和垂直水流之落水頭入滲理論為基礎,延伸推導連續落水頭入滲模式解析解,可用於估測不同深度下之飽和水力傳導係數。一維飽和垂直水流之水力傳導係數可總和表示為各分層之調和平均形式,藉由調合平均定義即可由上至下計算各分層之飽和水力傳導係數值。連續落水頭入滲模式可藉由入滲率與潮濕鋒運移深度倒數之線性迴歸式推估Ks,落水頭試驗次數與地表積蓄水位變化量將影響Ks分布解析度。為驗證連續落水頭入滲試驗之線性迴歸模式,本研究進行三組獨立之雙層土壤分布之砂箱試驗,結果顯示MSFIT線性迴歸模式估測之水力傳導係數值與12個採樣分析所得之值相近,且模式估測之分層水力傳導係數結果亦與砂箱土壤分布設計呈現出相同之遞減趨勢;MSFIT線性迴歸模式亦應用於現地試驗中,模式估測結果與現地觀測之土壤質地及採樣分析結果相近。除了利用觀測地表積蓄水位資料之MSFIT線性迴歸模式外,本研究亦提出以含水量觀測資料為主之MSFIT等量潮濕鋒模式,其模式依據觀測特定深度下之潮濕鋒運移時間關係來估測Ks。數值模式結果指出由初始含水量變化至飽和含水量之時間過程,中間時間點之位置可有效代表等量潮濕鋒到達時間。MSFIT等量潮濕鋒模式亦利用雙層土壤分布之砂箱試驗進行驗證,試驗結果顯示MSFIT等量潮濕鋒模式估測所得之水力傳導係數值與傳統定水頭試驗及MSFIT線性迴歸模式估測值皆相近。本研究提出之連續落水頭入滲模式不僅操作簡單,亦可有效推估獲得不同深度之一維飽和垂直水流之力傳導係數值。
Most infiltration methods measure the saturated hydraulic conductivity (Ks) of the unsaturated zone at only one depth at or near the surface. The purpose of this dissertation is to extend the falling-head infiltration theory to a multi-step falling-head infiltration test (MSFIT) for estimating Ks at various depths in a one-dimensional saturated vertical flow domain and to validate its results using laboratory and field data. A general analytical solution for Ks from the linear regression of infiltration rate and the reciprocal of the depth of the wetting front is derived for the wetted region of each step in the MSFIT. The Ks values for individual wetted sub-regions are calculated sequentially from the top down based on the fact that the Ks value of the whole wetted region is the depth-weighted harmonic mean of sub-regions for flow perpendicular to the wetted layers. The resolution of the wetted sub-region is determined by the number of steps and the change of the ponded water head. The MSFIT is performed in three independent laboratory two-layer sand columns for model verification. The estimated hydraulic conductivity shows a consistent decrease in three independent laboratory sand column tests and is in agreement with the value obtained from twelve core samples. The MSFIT was applied to a field site. The field results compare well to those of small core samples and field observation of the soil texture. An alternative using effective arrival time for estimating Ks at various depths was proposed. Numerical experiment shows that the effective arrival time of the wetting front can be well approximated by the average of the start and finish times of the change in water content. The MSFIT using effective arrival time approach was applied to a sandbox experiment in the laboratory. The experimental results are consistent with the hydraulic conductivity obtained using the constant-head ponded infiltration method and the measurements using linear regression approach. The proposed MSFIT is simple, flexible, and versatile for obtaining hydraulic conductivity at various depths for one-dimensional saturated vertical flow domains.
Ahuja, L.R., W.J. Rawls, D.R. Nielsen, and R.D. Williams. 1999. Determining soil hydraulic properties and their field variability from simpler measurements. p. 1207-1233. In R. W. Skaggs and J. Van Schilfgaarde (ed.). Agricultural drainage. ASA Monogr. No.38, ASA, Madison, WI.
Arriaga, F.J., T.S. Kornecki, K.S. Balkcom and R.L. Raper. 2009. A method for automating data collection from a double-ring infiltrometer under falling head conditions. Soil Use and Management. 26:61-67.
Bagarello, V., M. Iovino, and D. Elrick. 2004. A simplified falling-head technique for rapid determination of field-saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 68:66-73.
Bagarello, D.E. Elrick, and M. Iovino, and A. Sgroi. 2006. A laboratory analysis of falling head infiltration procedures for estimating the hydraulic conductivity of soils. Geoderma. 135: 322-334.
Bouwer, H. 1964. Unsaturated flow in ground-water hydraulics. J. Hydraul. Div. Amer. Soc. Civil Eng. 90(HY5): 121-144.
Bouwer, H. 1966. Rapid field measurement of air entry value and hydraulic conductivity of soil as significant parameters in flow system analysis. Water Resour. Res. 2(4): 729-738.
Bouwer, H. 1986. Intake rate: Cylinder infiltromter. p. 825-844. In A. Klute (ed.) Methods of soil analysis. Part 1. SSSA, Madison, WI.
Brooks, R.H. and A.T. Corey. 1964. Hydraulic properties of porous media. Hydrol. Pap. 3, Colo. State Univ., Fort Collins, Colo.
Carsel, R.F., and R.S. Parrish. 1988. Developing joint probability-distributions of soil-water retention characteristics. Water Resour. Res. 24: 755-769.
Charbeneau, R.J. and R.G. Asgian. 1991. Simulation of the transient soil water content profile for a homogeneous bare soil. Water Resour. Res. 27:1271-1279.
Childs, E.C., and M. Bybordi. 1969. The vertical movement of water in stratified porous material 1. Infiltration. Water Resour. Res. 5:446-459.
Corradini, C., F. Melone, and R.E. Smith. 1994. Modeling infiltration during complex rainfall sequences. Water Resour. Res. 30:2777-2784.
Davis, J., C. 2002. Statistics and Data Analysis in Geology, 3rd Edition, Wiley.
Elrick, D.E., and W.D. Reynolds. 1992. Methods for analyzing constant head well permeameter data. Soil Sci. Soc. Am. J. 56: 320-323.
Elrick, D.E., G.W. Parkin, W.D. Reynolds, and D.J. Fallow. 1995. Analysis of early-time and steady state single-ring infiltration under falling head conditions. Water Resour. Res. 31:1883-1894.
Elrick, D.E., R. Angulo-Jaramillo, D.J. Fallow, W.D. Reynolds, and G.W. Parkin. 2002. Analysis of infiltration under constant head and falling head conditions. p.47-53. In P.A.C. Raats et al. (ed.) Environmental mechanics: Water, mass and energy transfer in the biosphere. Geophysical Monograph Series, Vol.129. AGU, Washington, DC.
Fallow, D.J., D.E. Elrick, W.D. Reynolds, N. Baumgartner, and G.W. Parkin. 1994. Field measurement of hydraulic conductivity in slowly permeable materials using early-time infiltration measurements in unsaturated media, In Hydraulic conductivity and waste contaminant transport in soil, ASTM STP 1142, ed. D.E. Daniel and S.J. Trautwein, 375-389. Philadelphia: ASTM.
Flerchinger, G.N., F.J. Waltts, and G.L. Bloomsburg. 1988. Explicit solution to Green-Ampt equation for nonuniform soils. Journal of the Irrigation and Drainage Division. 114(3): 561-565.
Fok, Y.S. 1970. One-dimensional infiltration into layered soils. Journal of the Irrigation and Drainage Division. 96(2): 121-129.
Freeze, R.A., and J.A. Cherry. 1979. Groundwater. Englewood Cliffs, New Jersey, Prentice Hall.
Green, W.H., and G.A. Ampt. 1911. Studies on soil physics, I, Flow of air and water through soils. J. Agric. Sci. 4:1-24.
Gregory, J.H., M.D. Dukes, G.L. Miller, and P.H. Jones. 2005. Analysis of double-ring infiltration techniques and development of a simple automatic water delivery system, Applied Turfgrass Science. Online 31 May 2005.
Guarracino, L. 2007. Estimation of saturated hydraulic conductivity Ks from the van Genuchten shape parameter . Water Resour. Res. 43: W11502, dio:10.1029/2006WR005766.
Guyonnet, D., N. Amraoui, and R. Kara. 2000. Analysis of transient data from infiltrometer tests in fine-grained soils. Ground Water. 38: 396-402.
Haverkamp, R., M. Vauclin, J. Touma, P.J. Wierenga, G.. Vachaud. 1977. A comparison of numerical simulation models for one-dimensional infiltration. Soil Sci Soc Am J. 41: 285-294.
Haverkamp, R, J.Y. Parlange, J.L. Starr, Schmitz, and C. Fuentes. 1990. Infiltration under ponded conditions, III: A predictive equation based on physical parameters. Soil Sci., 149(5): 292-300.
Hillel, D. 1998. Environmental Soil Physics. Elsevier, New York.
Hopmans, J.W., J. Šimůnek, N. Romano, and W. Durner. 2002. Inverse methods. Methods of soil analysis. Soil Science Society of America, Inc., Madison, Wis., 963-1008.
Jury, W.A., W.R. Gardner, and W.H. Gardner. 1991. Soil Physics. 5th Edition, Wiley, USA.
Kacimov, A.R., S. Al-Ismaily, and A. Al-Maktoumi. 2010. Green-Ampt One-Dimensional Infiltration from a Ponded Surface into a Heterogeneous Soil. J. Irrig. And Drain. Eng. 136(1): doi:10.1061/(ASCE)IR.1943-4774.0000121.
Kool, J.B., and J.C. Parker. 1987. Development and evaluation of closed-form expressions for hysteretic soil hydraulic properties. Water Resour. Res. 23(1):105-114.
Kutílek, M., and D.R. Nielsen. 1994. Soil hydrology, geoecology textbook. Catena Verlag. Cremlingen-Destedt, Germany.
Lai, J., and L. Ren. 2007. Assessing the size dependency of measured hydraulic conductivity using double-ring infiltrometers and numerical simulation, Soil Sci. Soc. Am. J. 71:1667-1675.
Liu, J., J. Zhang, and J. Feng. 2008. Green-Ampt Model for Layered Soils with Nonuniform Initial Water Content Under Unsteady Infiltration. Soil Sci. Soc. Am. J. 72(4): 1041-1047.
Loaiciga, H.A. 2007. Approach to control the depth of water in basin irrigation and wetland flooding. J. Irrig. And Drain. Div. 135(5): 500-504.
Logsdon, S. D., and D. B. Jaynes. 1996. Spatial variability of hydraulic conductivity in a cultivated field at different times. Soil Sci. Doc. Am. J. 60(2): 703-709.
Mohanty, B.P., R.S. Kanwar, and C.J. Everts. 1994. Comparison of saturated hydraulic conductivity measurement methods for a Glacial-Till Soil. Soil Sci. Soc. Am. J. 58:672-677.
Mollerup, M., and S. Hansen. 2007. Power series solution for falling head ponded infiltration with evaporation. Water Resour. Res. 43: W03425, doi:10.1029/2006WR004928.
Moore, I.D. 1981. Infiltration equation modified for subsurface effects. Journal of the Irrigation and Drainage Division. 107(2): 71-86.
Mualem, Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12: 513-522.
Neuman, S.P. 1976. Wetting front pressure head in the infiltration model of Green and Ampt. Water Resour. Res. 12:564-566.
Nimmo, J.R., K.M. Schmidt, K.S. Perkins, and J.D. Stock. 2009. Rapid measurement of field-saturated hydraulic conductivity for areal characterization. Vadose Zone J. 8:142-149.
Ogden, F. L., and B. Saghafian. 1997. Green and Ampt infiltration with redistribution, J. Irrig. Drain. Eng. 123(5): 386-393.
Parlange, J.Y. 1971. Theory of water movement in soils 1. One-dimensional absorption. Soil Sci. 111: 134-137.
Philip, J.R. 1957. The theory of infiltration: 4. Sorptivity and algebraic infiltration equations. Soil Science. 84(3): 257-264.
Philip, J.R. 1987. The infiltration joining problem. Water Resour. Res. 23(12): 2239-2245.
Philip, J.R. 1992a. Falling Head Ponded Infiltration. Water Resour. Res. 28:2147-2148.
Philip, J.R. 1992b. Falling-head ponded infiltration with evaporation. J. Hydrol. 138(3/4): 591-598.
Philip, J.R. 1992c. What happens near a quasi-linear point source?. Water Resour. Res. 28:47-52.
Reynolds, W.D., D.E. Elrick, and B.E. Clothier. 1985. The constant head well permeameter: Effect of unsaturated flow. Soil Sci. 139:172-180.
Reynolds, W.D., and D.E. Elrick. 1986. A method for simultaneous in-situ measurements in the vadose zone of field saturated hydraulic conductivity, sorptivity, and the conductivity pressure head relationship. Ground Water Monit. Rev. 6:84-89.
Reynolds, W.D. 1993. Unsaturated hydraulic conductivity: Field measurement, In Soil sampling and methods of analysis. M.R. Carter, ed., Lewis, Boca Raton, Fla., 633-644.
Reynolds, W.D., and W.D. Zebchuk. 1996. Hydraulic conductivity in a clay soil: Two measurement techniques and spatial characterization. Soil Sci. Soc. Am. J. 60:1679-1685.
Reynolds, W.D., D.E. Elrick, E.G. Youngs, A. Amoozegar, H.W.G. Booltink, and J. Bouma. 2002. Saturated and field-saturated water flow parameters. p.797-878. In J.H. Dane and G.C. Topp (ed.) Methods of soil analysis. Part 4. Physical methods, SSSA, Madison, WI.
Reynolds, W.D. 2008a. Saturated Hydraulic Properties: Laboratory Methods. in Carter, M.R. and Gregorich, E.G. (eds.) - Soil Sampling and Methods of Analysis. 2nd Edition, CRC Press Taylor & Francis, Boca Raton, FL, USA, Chapter 75.
Reynolds, W.D. 2008b. Alternative unsaturated flow analyses for the falling-head ring infiltrometer. Vadose Zone J. 7:131-135.
Schwartz, F.W., and H. Zhang. 2003. Fundamentals of Ground Water. John Wiley & Sons, Inc.
Scott, H.D. 2000. Soil physics: agricultural and environmental applications. Iowa State University Press, Ames.
Shani, U., and D. Or. 1995. In situ method for estimating subsurface unsaturated hydraulic conductivity. Warer Resour. Res. 31:1863-1870.
Shouse, P.J., T.R. Ellsworth, and J.A. Jobes. 1994. Steady-state infiltration as a function of measurement scale. Soil Sci. 157:129-136.
Šimůnek, J., M. Sejna, and M. Th. Van Genuchten. 1999. The HYDRUS-2D software package for simulating two-dimensional movement of water, heat, and multiple solutes in variably saturated media, Version 2.0 IGWMC-TPS-53, Int. Ground Water Modeling Ctr., Colorado School of Mines, Golden.
Šimůnek, J., and J.W. Hopmans. 2002. Parameter optimization and nonlinear fitting, Methods of soil analysis. Soil Science Society of America, Inc., Madison, Wis., 139-157.
Struthers, I., C. Hinz, and M. Sivapalan. 2006. A multiple wetting front gravitational infiltration and redistribution model for water balance applications.Water Resour. Res. 42(6), doi: 10.1029/2005WR004482.
Swartzendruber, D. 1987. A quasi-solution of Richards’ equation for the downward infiltration of water into soil. Water Resour. Res. 23: 809-817.
van Genuchten, M.Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44: 892-898.
van Genuchten, M.Th. and D.R. Nielsen. 1985. On describing and predicting the hydraulic properties of unsaturated soils. Annales Geophysicae. 3(5): 615-628.
Warrick, A.W. 2003. Soil Water dynamics. New York, Oxford University.
Wu, L., and L. Pan. 1997. A generalized solution to infiltration from single-ring infiltarometers by scaling. Soil Sci. Soc. Am. J. 61:1318-1322.
Wu, L., L. Pan, M.J. Roberson, and P.J. Shouse. 1997. Numerical evaluation of ring infiltrometers under various soil conditions. Soil Sci. 162:771-777.
Zeleke, T.B., and B.C. Si. 2005. Parameter estimation using the falling head infiltration model: Simulation and field experiment. Water Resour. Res. 41(2), W02027, doi:10.1029/2004WR003407.