| 研究生: |
余翠紋 Yu, Tsui-Wen |
|---|---|
| 論文名稱: |
高解析度數值地形模型精度評估與應用 The Accuracy Assessment and Applications of High Resolution Digital Terrain Model |
| 指導教授: |
曾清涼
Tseng, Chin-Liang 余騰鐸 Yu, Teng-To |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 多項式回歸 、水庫容積 |
| 外文關鍵詞: | DTM, LiDAR |
| 相關次數: | 點閱:53 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
數值地形模型(Digital Terrain Model,DTM),係指不含地表植被及人工建物之地表自然起伏的數值模型。近年廣泛應用於各種領域。
由於台灣地區處於板塊交接處,地震頻繁,且地形陡峭河流短促,往往因颱風帶來之豐沛雨量導致土石流或坍塌,所以DTM 近年常用於坡地災害及河川淹水模式之研究。採用DTM 資料可應用於災後範圍調查,若結合現地之地質資料甚至可做到災前預警之功能,而這些均取決於DTM 之取得及精度。過去DTM 產製主要由航空攝影作業產生,其產生過程困難、取得不易,更新更是困難。而光達(Light Detection And Ranging,LiDAR)產生DTM 為目前最新的應用技術,
可取得高精度之DTM 資料,由於較不受限於天氣且由接收至處理時間快速,在防災應用上可達到近即時(Near Real Time)之目的。
本研究先利用內政部公告之一、二等水準點及一、二、三等衛星控制點資料來驗證LiDAR 5 公尺網格DTM、航測產製之5 公尺網格DTM 及舊有之農航所40 公尺網格DTM 之高程精度,發現LiDAR 5 公尺網格DTM 精度最高RMS 值約0.14 公尺公分、40 公尺網格DTM 之RMS 值達2.78 公尺,己不敷使用,而航測產製之5 公尺網格DTM 之RMS 值約0.59 公尺,精度雖佳,但與LiDAR相較之下,處理過程費時費力。
文中最後利用精度最高的LiDAR5 公尺網格DTM 結合RTK 水深測量建立烏山頭水庫之數值地形模型,使用多項式回歸方式,求出該水庫的HA、HV 曲線。再與之前的庫容數據相比,推估出目前水庫的淤積量。
ABSTRACT
Taiwan locates on the junction of several earth plates, which associates withfrequent earthquakes, steep landforms and short streams. Due to this kind of geology,mudflows and landslides usually come after a heavy rain brought by typhoons.Therefore, disaster protection and investigation is a big issue. Digital Terrain Model(DTM) has been applied on the researches of slope disasters and flood in the recentyears.
Digital Terrain Model (DTM) is a three-dimension model digitizing the naturalundulation of the earth surface, excluding vegetation and artificial buildings. It has
been applied on various areas recently. DTM could help after-disaster investigations.If cooperating with present geology information, it even could have pre-warning
functions for disasters, which depends on the precision of DTM data. In the past,DTM was created from aerial photo processing. The defects are difficulties in obtainment of the raw data and DTM creation, even renewal. LiDAR (Light Detection And Ranging) is the latest technology for creating DTM, which could get higher accuracy of DTM. It has no restriction of weather and has faster proceeding from
receiving the data. Thus, it could achieve the near-real-time purpose on disaster protections.
This study uses the data of the first-order leveling network, and the GPS controlling networks announced by the Ministry of the Interior to test and verify the vertical accuracy of LiDAR 5m grid DTM, 5m grid DTM generated by
photo-geometry and the existed 40-meter grid DTM owned by Agricultural and Forestry Aerial Survey Institute (AFASI). The result found that the LiDAR 5 DTM has the highest precision, and the 40-meter DTM is inadequate to use any more. Besides, the DTM generated by photo-geometry has good accuracy, however it is more time-consuming and more laborious compared to the LiDAR DTM.
In the final part, the study applies the LiDAR 5-m grid DTM, the most accurate digital model in this research, combining with Real-Time Kinematic survey (RTK) of water deepness to build the digital terrain model of Wushantou Reservoir. In addition, it uses polynomial regression to get HA and HV curves of the reservoir, and then compares with the former reservoir volume data to estimate the present amounts of silt under the reservoir.
參考文獻
史天元,2002。應用空載雷射掃描儀進行地震災區形變研究(2/2),行政院農業委
員會九十一年度試驗研究計畫,91 農科-5.1.1-林-R1(8)。
李志林,1999。數字高程模型,武漢大學出版社,中國武漢。
李良輝,1994。遙測影像之幾何處理與數值地形模型之整合應用,中正理工學院
測繪工程學系,桃園。
國立成功大學衛星資訊研究中心,2004。烏山頭水庫集水區航測數值影像地圖及
DTM 製作計劃結案成果報告,台灣省嘉南農田水利會,台南。
國立成功大學衛星資訊研究中心,2001。內政部委託辦理「一等一級水準網測量
督導查核工作」總報告書,內政部,台北。
郭芳吟,2003.。南投地區九二一地震前後土石流特性之研究,暨南國際大學土
木工程學系碩士論文,南投。
周怡君,2002。應用數值地形模型於集水區潛在崩塌地之模擬研究,逢甲大學土
木及水利工程所碩士論文,台中。
林文賜,2002。集水區空間資訊萃取及坡面泥砂產量推估之研究,國立中興大學
水土保持學系博士論文,台中。
魏新洵,1990。地理資訊系統應用於集水區特性及水文分析之研究,國立中興大
學水土保持學系碩士論文,台中。
李欣遠,1998。集水區格網自動化劃分之研究,國立成功大學水利及海洋工程學
系碩士論文,台南。
內政部,2003。商精度及高解析度數值地形模型測製規範,內政部,台北。
內政部,1999。一等水準測量作業規範,內政部,台北。
Axelsson, P., 2000. DEM Generation from Laser Scanner Data Using Adaptive
Models, International Archives of Photogrammetry and Remote Sensing,
Amsterdam, pp. 110-117.
Baltsavias, E.P., 1999. Airborne Laser scanning: Existing Systems and Firms and
Other Resources, ISPRS Journal of Photogrammetry & Remote Sensing, 54: pp.
164-198.
Filin, S., 2001. Recovery of systematic biases in laser altimeters using natural surfaces,
International Archives of Photogrammetry and Remote Sensing, 34(3-W4):
85-91.
Filin, S., Csathó, B., Schenk, T., 2001. An analytical model for in-flight calibration of
laser altimeter systems using natural surfaces, Proceedings of the Annual
Conference of the American Society of Photogrammetry and Remote Sensing
(ASPRS), St. Louis MS. Published on CD-ROM
[Haala, N., Brenner, C., Anders, K., 1998. 3D Urban GIS from laser altimeter and 2D
map data. International Archives of Photogrammetry and Remote Sensing,
32:339-346.
Huising, E. J. and L. M. Gomes Pereira, 1998. Errors and accuracy estimates of laser
data acquired by various laser scanning systems for topographic applications.
ISPRS J. of Photogrammetry and Remote Sensing, 53(5): 245-261.
Hofton, M., B. Blair, J. B. Minster, J. R. Ridgway, N. Williams, J. L. Bufton and D. L.
Rabine, 2000. An Airborne Laser Altimetry Survey of Long Valley, California,
Int. J. Remote Sensing 21(12): 2413-2437.
Kilian, J., N. Haala and M. Englich, 1996. Capture of Elevation of Airborne Laser
Scanner Data, International Archives of Photogrammetry and Remote Sensing,
31(B3): 383-388.
Mass, H., G.Vosselman, 1999. Two algorithms for extracting building model from
raw laser altimetry data. ISPRS JPRS, 54: 153-163.
Maune, David F., 2001. Digital Elevation Model Technologies and Applications: The
DEM Users Manual, 516-525
Means, J.E., S.A. Acker, D.J. Harding, J.B. Blair, M.A. Lefsky, W.B. Cohen, M.E.
Harmon, and W.A. Mckee, 1999. Use of large-footprint scanning airborne lidar
toestimate forest stand characteristics in the Western Cascades of Oregon.
RemoteSensing of Environment, 67:298-308.
Nelson, R.F., R.G. Oderwald, and T.G. Gregoire, 1997. Separating the ground and
airborne sampling phases to estimate tropical forest basal area, volume, and
biomass. Remote Sensing of Environment, 60:311-326.
Postolov, Y., A. Krupnik and K. McIntosh ,1999. Registration of airborne laser data
to surface generated by photogrammetric means. International Archives of
Photogrammetry and Remote Sensing, 32(3{W14}: 95-100.
Ridgway, J. R., J. B. Minster, N. Williams, J. L. Bufton and W. B. Krabill ,1997.
Airborne laser altimeter survey of Long Valley California. Int. J. Geophys., 131,
267-280.
Wehr A., Lohr U., 1999. Airborne laser scanning – an introduction and overview.
ISPRS J. Photogr. Rem. Sensing 54(2/3).