簡易檢索 / 詳目顯示

研究生: 王子維
Wang, Tzu-Wei
論文名稱: 以旋塗法形成2D/3D堆疊結構之鈣鈦礦太陽能電池
Perovskite solar cell with 2D/3D stacking structures formed by spin coating
指導教授: 高騏
Gau, Chie
共同指導教授: 陳昭宇
Chen, Peter
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 81
中文關鍵詞: PEAI (Phenylethylammonium iodide)二維鈣鈦礦鈣鈦礦太陽能電池穩定性
外文關鍵詞: PEAI (Phenylethylammonium iodide), two-dimensional perovskite, perovskite solar cell, stability
相關次數: 點閱:71下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,鈣鈦礦太陽能電池的轉換效率發展迅速,使得再生能源的研究展露出一道曙光。因此為了朝向商業化發展,除了優異的光電轉換效率之外,電池的長時間工作穩定性的表現都是重要的關鍵,因此本篇論文的研究動機為提升鈣鈦礦太陽能電池的穩定性。
      本研究主要探討,將有機材料PEAI (Phenylethylammonium iodide)直接旋塗於三維鈣鈦礦MAPbI3上,形成低n值二維鈣鈦礦堆疊於三維鈣鈦礦上,探討薄膜的光學性質與鈣鈦礦電池元件的穩定性影響。在旋塗製程上,也探討有無預熱基板之薄膜與整體元件表現的影響。結果顯示,使用適量濃度的PEAI溶液進行後處理,雖然在整體轉換效率有略微下降,但由於二維鈣鈦礦的保護,能夠使元件光照和濕度穩定性提升。使用預熱基板方法,由於在SEM、XRD等分析說明能夠加速二維鈣鈦礦的生長,進而形成更均勻的表面形貌,且在低濃度的效率表現上較無預熱基板佳。

    This study mainly discussed the direct spin-coating of organic material PEAI (Phenylethylammonium iodide) on three-dimensional perovskite MAPbI3 to form a low-n-value two-dimensional perovskite stack on a three-dimensional perovskite, and discussed the optical properties of the film and the stability of perovskite solar cells. In the spin coating process, the influence of the presence of the preheated substrate on the film and the overall device performance was also investigated. The results show that the use of the appropriate concentration of PEAI solution for post-treatment, although a slight decrease in the overall conversion efficiency, but due to the protection of two-dimensional perovskite, can enhance the stability of light and moristure. Using the preheated substrate method, analysis by SEM, XRD, etc. can accelerate the growth of the two-dimensional perovskite, thereby forming a more uniform surface morphology, and it is better at the low concentration efficiency than without a preheated substrate.

    中文摘要 I Extended Abstract II 致謝 XVII 目錄 XVIII 表目錄 XXIII 圖目錄 XXIV 第一章 緒論 1 1-1 前言 1 1-2 太陽能電池的演進及發展 1 1-2-1 第一代太陽能電池 3 1-2-2 第二代太陽能電池 3 1-2-3 第三代太陽能電池 4 1-3 太陽能電池基本原理 6 1-3-1 半導體 6 1-3-2 P-N接面 7 1-3-3 太陽光 9 1-3-4 太陽能電池的量測參數 10 1-3-4-1 開路電壓(Open-Circuit Voltage, Voc) 10 1-3-4-2 短路電流密度(Short Circuit Current Density, Jsc) 10 1-3-4-3 填充因子(Fill Factor, FF) 11 1-3-4-4 光電轉換效率ƞ(Photoelectric Conversion Efficiency, PCE) 11 1-4 研究動機 12 第二章 文獻回顧 13 2-1 鈣鈦礦材料 13 2-2 鈣鈦礦太陽能電池 15 2-3 鈣鈦礦太陽能電池的結構 18 2-3-1 n-i-p結構 19 2-3-2 p-i-n結構 20 2-4 鈣鈦礦的結構 21 2-4-1 多元混合鈣鈦礦 21 2-4-2 二維鈣鈦礦 24 第三章 實驗方法與儀器分析 33 3-1 實驗儀器與藥品 33 3-2 實驗設計與流程圖 35 3-3 鈣鈦礦太陽能電池元件製備 37 3-3-1 基板處理 37 3-3-2 緻密阻擋層二氧化鈦(TiO2)薄膜 37 3-3-3 二氧化鈦多孔層(Mesoscopic TiO2)製備 37 3-3-4 3D鈣鈦礦(Perovskite)製備 37 3-3-5 PEAI溶液後處理 38 3-3-6 Spiro-OMeTAD製備 38 3-3-7 Au電極製備 39 3-4 製程與樣品分析之設備 39 3-4-1製程設備 39 3-4-1-1加熱板(hot plate) 39 3-4-1-2旋轉塗佈機(Spin coater) 39 3-4-1-3熱蒸鍍系統(Thermal deposition) 39 3-4-2分析儀器 40 3-4-2-1 I-V特性曲線量測分析 40 3-4-2-2量子轉換效率IPCE 40 3-4-2-3吸收光譜量測(UV-vis) 41 3-4-2-4光致螢光激發(Photoluminescene, PL) 41 3-4-2-5多光子激發掃描顯微鏡(Multipgoton Excitation Microscopy) 42 3-4-2-6 掃描式電子顯微鏡(Scanning Electron Microscopic, SEM) 42 3-4-2-7 X光繞射分析(X-Ray Diffration , XRD) 43 3-4-2-8低掠角大角度X 光散射分析(Grazing-Incidence Wide-Angle X-ray Scattering, GIWAXS) 44 第四章 實驗結果與討論 45 4-1前言 45 4-2堆疊結構之樣品分析 45 4-2-1 XRD分析 45 4-2-2 UV-vis、PL分析 46 4-2-3 SEM分析 48 4-2-4 GIWAXS分析 52 4-2-5多光子激發分析 54 4-3預熱基板比較 57 4-3-1 XRD分析 57 4-3-2 UV-vis、PL分析 58 4-3-3 SEM分析 60 4-3-4 GIWAXS分析 63 4-4堆疊結構之元件 65 4-4-1預熱基板與無預熱基板之元件表現 66 4-4-2穩定性測試 70 4-4-2-1未封裝元件在未照光環境之穩定性測試 70 4-4-2-2封裝元件在持續照光環境之穩定性測試 71 4-5與文獻比較討論 72 4-5-1基本元件比較 72 4-5-2 2D鈣鈦礦薄膜比較 72 4-5-3 2D/3D堆疊結構比較 73 4-5-4 Lifetime比較 74 第五章 結論與未來展望 75 5-1 結論 75 5-2 未來展望 75 參考文獻 76

    [1] A. E. Becquerel, "Comptes Rendus de L’Academie des Sciences.," 1839, 9, 561-567.
    [2] C. Fritts, "Advancement of Science," 1883, 33, 97,.
    [3] R. S. Ohl, "Light-Sensitive Electric Device," U. S. Patent 2402662 1946,.
    [4] M. A. Green, "Photovoltaics: coming of age," in Photovoltaic Specialists Conference, 1990., Conference Record of the Twenty First IEEE, 1990, pp. 1-8: IEEE.
    [5] K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, S. Okamoto., "Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell." IEEE Journal of Photovoltaics, vol. 4, no. 6, pp. 1433-1435, 2014.
    [6] Weiwei Deng, D. Chen, Z. Xiong, Pierre Jacques Verlinden, Senior Member, IEEE, J. Dong, F. Ye, H. Li, H. Zhu, M. Zhong, Y. Yang, Y. Chen, Z. Feng, P. Altermat., "20.8% PERC solar cell on 156 mm× 156 mm P-type multicrystalline silicon substrate," IEEE Journal of Photovoltaics, vol. 6, no. 1, pp. 3-9, 2016.
    [7] M. Matsumoto. T. Suezaki, K. Saito, I. Yoshida, M. Kondo, T. Matsui, H. Sai,, "Thin film solar cells," 28th European Photovoltaic Solar Energy Conference, 2013, 2213 - 2217,.
    [8] B. M. Kayes, H.Nie, R. Twist, S.G. Spruytte, F.Reinhardt, I.C. Kizilyalli, G.S. Higashi., "Presented in part at the 37th IEEE Photovoltaic Specialists Conference," Seattle, WA, 2011.
    [9] F. Dimroth, "New world record for solar cell efficiency at 46%," Fraunhofer ISE: Freiburg, Germany, 2014.
    [10] FirstSolarPress, "First Solar builds the highest efficiency thin film PV cell on record," ed, 2014.
    [11] Solibro, "Solibro beats world record for solar cells," Press Release, 2014.
    [12] B. O'regan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," nature, vol. 353, no. 6346, p. 737, 1991.
    [13] H. Ozawa, T. Sugiura, T. Kuroda, K. Nozawa, and H. Arakawa, "Highly efficient dye-sensitized solar cells based on a ruthenium sensitizer bearing a hexylthiophene modified terpyridine ligand," Journal of Materials Chemistry A, vol. 4, no. 5, pp. 1762-1770, 2016.
    [14] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009.
    [15] W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, S. I. Seok., "Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells," Science, vol. 356, no. 6345, pp. 1376-1379, 2017.
    [16] NREL, "https://www.nrel.gov/pv/assets/images/efficiency-chart.png," 2017.
    [17] ElectronicsTutorials,"http://www.electronics-tutorials.ws/diode/diode_2.html."
    [18] K. Gibbs, Schoolphysis.
    [19] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, "6.5% efficient perovskite quantum-dot-sensitized solar cell," Nanoscale, vol. 3, no. 10, pp. 4088-4093, 2011.
    [20] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, N. G. Park., "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%," Scientific reports, vol. 2, p. 591, 2012.
    [21] J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Gratzel., "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, vol. 499, no. 7458, p. 316, 2013.
    [22] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells," Nature materials, vol. 13, no. 9, p. 897, 2014.
    [23] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites," Science, p. 1228604, 2012.
    [24] M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Gratzel., "Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency," Energy & Environmental Science, vol. 9, no. 6, pp. 1989-1997, 2016.
    [25] J. Y. Jeng ,Y. F. Chiang ,M. H. Lee , S. R. Peng ,T. F. Guo , Peter Chen , T. C. Wen., "CH3NH3PbI3 perovskite/fullerene planar‐heterojunction hybrid solar cells," Advanced Materials, vol. 25, no. 27, pp. 3727-3732, 2013.
    [26] J. You, Z. Hong, Yang (Michael) Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. S. Liu, H. Zhou, Yang Yang., "Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility," ACS Nano, 2014, 8 (2), pp 1674–1680.
    [27] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo & S. I. Seok., "Compositional engineering of perovskite materials for high-performance solar cells," Nature, vol. 517, no. 7535, p. 476, 2015.
    [28] H. Choi, J. Jeong, H.-B. Kim, S. Kim, B. Walker, G.-H. Kim, J. Y. Kim., "Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells," Nano Energy, vol. 7, pp. 80-85, 2014.
    [29] J. W. Lee, D. H. Kim, H. S. Kim, S. W. Seo, S. M. Cho, and N. G. Park, "Formamidinium and cesium hybridization for photo‐and moisture‐stable perovskite solar cell," Advanced Energy Materials, vol. 5, no. 20, 2015.
    [30] Z. Cheng, J. Lin, "Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering," CrystEngComm, vol. 12, no. 10, pp. 2646-2662, 2010.
    [31] G. Grancini, C. Roldán-Carmona, I. Zimmermann, D. Martineau, S. Narbey, F. Oswald, M. K. Nazeeruddin., "Ultra-stable 2D/3D hybrid perovskite photovoltaic module," Mesoscale and Nanoscale Physics, 2016.
    [32] L. M. Herz, "Charge-carrier dynamics in organic-inorganic metal halide perovskites," Annual review of physical chemistry, vol. 67, pp. 65-89, 2016.
    [33] G. Niu, X. Guo, and L. Wang, "Review of recent progress in chemical stability of perovskite solar cells," Journal of Materials Chemistry A, vol. 3, no. 17, pp. 8970-8980, 2015.
    [34] I. C. Smith, E. T. Hoke, D. Solis‐Ibarra, M. D. McGehee, and H. I. Karunadasa, "A layered hybrid perovskite solar‐cell absorber with enhanced moisture stability," Angewandte Chemie, vol. 126, no. 42, pp. 11414-11417, 2014.
    [35] D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, and M. G. Kanatzidis, "2D homologous perovskites as light-absorbing materials for solar cell applications," Journal of the American Chemical Society, vol. 137, no. 24, pp. 7843-7850, 2015.
    [36] G. Grancini, C. Roldan-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, M. K. Nazeeruddin., "One-Year stable perovskite solar cells by 2D/3D interface engineering," Nature communications, vol. 8, p. 15684, 2017.
    [37] M. Lira-Cantú, "Perovskite solar cells: Stability lies at interfaces," Nature Energy, vol. 2, no. 7, p. 17115, 2017.
    [38] L. N. Quan, M. Yuan, R. Comin, O. Voznyy, E. M. Beauregard, S. Hoogland, A. Buin, A. R. Kirmani, K. Zhao, A. Amassian, D. H. Kim, E. H. Sargent., "Ligand-stabilized reduced-dimensionality perovskites," Journal of the American Chemical Society, vol. 138, no. 8, pp. 2649-2655, 2016.
    [39] Z. Wang, Q. Lin, F. P. Chmiel, N. Sakai, L. M. Herz, and H. J. Snaith, "Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites," Nature Energy, vol. 2, no. 9, p. 17135, 2017.
    [40] Y. Lin, Y. Bai, Y. Fang, Z. Chen, S. Yang, X. Zheng,S. Tang,Y. Liu, J. Zhao, and J. Huang., "Enhanced Thermal Stability in Perovskite Solar Cells by Assembling 2D/3D Stacking Structures," The journal of physical chemistry letters, vol. 9, no. 3, pp. 654-658, 2018.
    [41] W. Peng, J. Yin, K.-T. Ho, Olivier Ouellette, Michele De Bastiani, Banavoth Murali,O. E. Tall, C. Shen, X. Miao, J. Pan, E. Alarousu, J.-H. He, Boon S. Ooi,Omar F. Mohammed, E. Sargent, and Osman M. Bakr., "Ultralow Self-Doping in Two-dimensional Hybrid Perovskite Single Crystals," Nano letters, vol. 17, no. 8, pp. 4759-4767, 2017.

    下載圖示 校內:2023-07-01公開
    校外:2023-07-01公開
    QR CODE