| 研究生: |
王子維 Wang, Tzu-Wei |
|---|---|
| 論文名稱: |
以旋塗法形成2D/3D堆疊結構之鈣鈦礦太陽能電池 Perovskite solar cell with 2D/3D stacking structures formed by spin coating |
| 指導教授: |
高騏
Gau, Chie |
| 共同指導教授: |
陳昭宇
Chen, Peter |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | PEAI (Phenylethylammonium iodide) 、二維鈣鈦礦 、鈣鈦礦太陽能電池 、穩定性 |
| 外文關鍵詞: | PEAI (Phenylethylammonium iodide), two-dimensional perovskite, perovskite solar cell, stability |
| 相關次數: | 點閱:71 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,鈣鈦礦太陽能電池的轉換效率發展迅速,使得再生能源的研究展露出一道曙光。因此為了朝向商業化發展,除了優異的光電轉換效率之外,電池的長時間工作穩定性的表現都是重要的關鍵,因此本篇論文的研究動機為提升鈣鈦礦太陽能電池的穩定性。
本研究主要探討,將有機材料PEAI (Phenylethylammonium iodide)直接旋塗於三維鈣鈦礦MAPbI3上,形成低n值二維鈣鈦礦堆疊於三維鈣鈦礦上,探討薄膜的光學性質與鈣鈦礦電池元件的穩定性影響。在旋塗製程上,也探討有無預熱基板之薄膜與整體元件表現的影響。結果顯示,使用適量濃度的PEAI溶液進行後處理,雖然在整體轉換效率有略微下降,但由於二維鈣鈦礦的保護,能夠使元件光照和濕度穩定性提升。使用預熱基板方法,由於在SEM、XRD等分析說明能夠加速二維鈣鈦礦的生長,進而形成更均勻的表面形貌,且在低濃度的效率表現上較無預熱基板佳。
This study mainly discussed the direct spin-coating of organic material PEAI (Phenylethylammonium iodide) on three-dimensional perovskite MAPbI3 to form a low-n-value two-dimensional perovskite stack on a three-dimensional perovskite, and discussed the optical properties of the film and the stability of perovskite solar cells. In the spin coating process, the influence of the presence of the preheated substrate on the film and the overall device performance was also investigated. The results show that the use of the appropriate concentration of PEAI solution for post-treatment, although a slight decrease in the overall conversion efficiency, but due to the protection of two-dimensional perovskite, can enhance the stability of light and moristure. Using the preheated substrate method, analysis by SEM, XRD, etc. can accelerate the growth of the two-dimensional perovskite, thereby forming a more uniform surface morphology, and it is better at the low concentration efficiency than without a preheated substrate.
[1] A. E. Becquerel, "Comptes Rendus de L’Academie des Sciences.," 1839, 9, 561-567.
[2] C. Fritts, "Advancement of Science," 1883, 33, 97,.
[3] R. S. Ohl, "Light-Sensitive Electric Device," U. S. Patent 2402662 1946,.
[4] M. A. Green, "Photovoltaics: coming of age," in Photovoltaic Specialists Conference, 1990., Conference Record of the Twenty First IEEE, 1990, pp. 1-8: IEEE.
[5] K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, S. Okamoto., "Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell." IEEE Journal of Photovoltaics, vol. 4, no. 6, pp. 1433-1435, 2014.
[6] Weiwei Deng, D. Chen, Z. Xiong, Pierre Jacques Verlinden, Senior Member, IEEE, J. Dong, F. Ye, H. Li, H. Zhu, M. Zhong, Y. Yang, Y. Chen, Z. Feng, P. Altermat., "20.8% PERC solar cell on 156 mm× 156 mm P-type multicrystalline silicon substrate," IEEE Journal of Photovoltaics, vol. 6, no. 1, pp. 3-9, 2016.
[7] M. Matsumoto. T. Suezaki, K. Saito, I. Yoshida, M. Kondo, T. Matsui, H. Sai,, "Thin film solar cells," 28th European Photovoltaic Solar Energy Conference, 2013, 2213 - 2217,.
[8] B. M. Kayes, H.Nie, R. Twist, S.G. Spruytte, F.Reinhardt, I.C. Kizilyalli, G.S. Higashi., "Presented in part at the 37th IEEE Photovoltaic Specialists Conference," Seattle, WA, 2011.
[9] F. Dimroth, "New world record for solar cell efficiency at 46%," Fraunhofer ISE: Freiburg, Germany, 2014.
[10] FirstSolarPress, "First Solar builds the highest efficiency thin film PV cell on record," ed, 2014.
[11] Solibro, "Solibro beats world record for solar cells," Press Release, 2014.
[12] B. O'regan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," nature, vol. 353, no. 6346, p. 737, 1991.
[13] H. Ozawa, T. Sugiura, T. Kuroda, K. Nozawa, and H. Arakawa, "Highly efficient dye-sensitized solar cells based on a ruthenium sensitizer bearing a hexylthiophene modified terpyridine ligand," Journal of Materials Chemistry A, vol. 4, no. 5, pp. 1762-1770, 2016.
[14] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009.
[15] W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, S. I. Seok., "Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells," Science, vol. 356, no. 6345, pp. 1376-1379, 2017.
[16] NREL, "https://www.nrel.gov/pv/assets/images/efficiency-chart.png," 2017.
[17] ElectronicsTutorials,"http://www.electronics-tutorials.ws/diode/diode_2.html."
[18] K. Gibbs, Schoolphysis.
[19] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, "6.5% efficient perovskite quantum-dot-sensitized solar cell," Nanoscale, vol. 3, no. 10, pp. 4088-4093, 2011.
[20] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, N. G. Park., "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%," Scientific reports, vol. 2, p. 591, 2012.
[21] J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Gratzel., "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, vol. 499, no. 7458, p. 316, 2013.
[22] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells," Nature materials, vol. 13, no. 9, p. 897, 2014.
[23] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites," Science, p. 1228604, 2012.
[24] M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Gratzel., "Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency," Energy & Environmental Science, vol. 9, no. 6, pp. 1989-1997, 2016.
[25] J. Y. Jeng ,Y. F. Chiang ,M. H. Lee , S. R. Peng ,T. F. Guo , Peter Chen , T. C. Wen., "CH3NH3PbI3 perovskite/fullerene planar‐heterojunction hybrid solar cells," Advanced Materials, vol. 25, no. 27, pp. 3727-3732, 2013.
[26] J. You, Z. Hong, Yang (Michael) Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. S. Liu, H. Zhou, Yang Yang., "Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility," ACS Nano, 2014, 8 (2), pp 1674–1680.
[27] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo & S. I. Seok., "Compositional engineering of perovskite materials for high-performance solar cells," Nature, vol. 517, no. 7535, p. 476, 2015.
[28] H. Choi, J. Jeong, H.-B. Kim, S. Kim, B. Walker, G.-H. Kim, J. Y. Kim., "Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells," Nano Energy, vol. 7, pp. 80-85, 2014.
[29] J. W. Lee, D. H. Kim, H. S. Kim, S. W. Seo, S. M. Cho, and N. G. Park, "Formamidinium and cesium hybridization for photo‐and moisture‐stable perovskite solar cell," Advanced Energy Materials, vol. 5, no. 20, 2015.
[30] Z. Cheng, J. Lin, "Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering," CrystEngComm, vol. 12, no. 10, pp. 2646-2662, 2010.
[31] G. Grancini, C. Roldán-Carmona, I. Zimmermann, D. Martineau, S. Narbey, F. Oswald, M. K. Nazeeruddin., "Ultra-stable 2D/3D hybrid perovskite photovoltaic module," Mesoscale and Nanoscale Physics, 2016.
[32] L. M. Herz, "Charge-carrier dynamics in organic-inorganic metal halide perovskites," Annual review of physical chemistry, vol. 67, pp. 65-89, 2016.
[33] G. Niu, X. Guo, and L. Wang, "Review of recent progress in chemical stability of perovskite solar cells," Journal of Materials Chemistry A, vol. 3, no. 17, pp. 8970-8980, 2015.
[34] I. C. Smith, E. T. Hoke, D. Solis‐Ibarra, M. D. McGehee, and H. I. Karunadasa, "A layered hybrid perovskite solar‐cell absorber with enhanced moisture stability," Angewandte Chemie, vol. 126, no. 42, pp. 11414-11417, 2014.
[35] D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, and M. G. Kanatzidis, "2D homologous perovskites as light-absorbing materials for solar cell applications," Journal of the American Chemical Society, vol. 137, no. 24, pp. 7843-7850, 2015.
[36] G. Grancini, C. Roldan-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, M. K. Nazeeruddin., "One-Year stable perovskite solar cells by 2D/3D interface engineering," Nature communications, vol. 8, p. 15684, 2017.
[37] M. Lira-Cantú, "Perovskite solar cells: Stability lies at interfaces," Nature Energy, vol. 2, no. 7, p. 17115, 2017.
[38] L. N. Quan, M. Yuan, R. Comin, O. Voznyy, E. M. Beauregard, S. Hoogland, A. Buin, A. R. Kirmani, K. Zhao, A. Amassian, D. H. Kim, E. H. Sargent., "Ligand-stabilized reduced-dimensionality perovskites," Journal of the American Chemical Society, vol. 138, no. 8, pp. 2649-2655, 2016.
[39] Z. Wang, Q. Lin, F. P. Chmiel, N. Sakai, L. M. Herz, and H. J. Snaith, "Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites," Nature Energy, vol. 2, no. 9, p. 17135, 2017.
[40] Y. Lin, Y. Bai, Y. Fang, Z. Chen, S. Yang, X. Zheng,S. Tang,Y. Liu, J. Zhao, and J. Huang., "Enhanced Thermal Stability in Perovskite Solar Cells by Assembling 2D/3D Stacking Structures," The journal of physical chemistry letters, vol. 9, no. 3, pp. 654-658, 2018.
[41] W. Peng, J. Yin, K.-T. Ho, Olivier Ouellette, Michele De Bastiani, Banavoth Murali,O. E. Tall, C. Shen, X. Miao, J. Pan, E. Alarousu, J.-H. He, Boon S. Ooi,Omar F. Mohammed, E. Sargent, and Osman M. Bakr., "Ultralow Self-Doping in Two-dimensional Hybrid Perovskite Single Crystals," Nano letters, vol. 17, no. 8, pp. 4759-4767, 2017.