| 研究生: |
張富淼 Chang, Fu-Miao |
|---|---|
| 論文名稱: |
具曲度微構件之蜂巢材料勁度與強度 Elastic Moduli and Strengths of Regular Hexagonal Honeycombs With Curved Cell Edges |
| 指導教授: |
黃忠信
Huang, Jong-Shin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 曲桿 、蜂巢材料 、強度 、勁度 |
| 外文關鍵詞: | Honeycomb, Strength, Elastic Moduli, Curved Cell Edge |
| 相關次數: | 點閱:96 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蜂巢材料因具有質量輕、低熱傳導及高吸能等優點,已被廣泛應用於輕質結構工程上,為確保結構之安全性,必須對蜂巢材料行為具有相當程度瞭解。
本研究主要探討具曲桿與具直桿蜂巢材料力學性質之差異性,亦即具曲桿蜂巢材料受外加載重時,楊氏模數、柏松比、脆性壓碎強度及塑性破壞強度受曲桿曲度影響程度。首先本文選擇圓弧曲線與正弦函數曲線兩種以模擬曲桿,然後建立力學分析模型再加以推導理論解。此外並使用有限元素法套裝軟體ABAQUS分析並模擬一無窮域具曲桿蜂巢材料,所得結果將與理論解作一比較與印證。
The Young’s modulus, Poisson’s ratio, plastic collapse strength and brittle crushing strength of regular hexagonal honeycombs with non-straight cell edges are derived theoretically from a curved cell edge model. In the model, the geometry of curved cell edges is taken to be either circular or sinusoidal. Theoretical results indicate that the elastic moduli and strengths of regular hexagonal honeycombs are significantly affected by curved cell edges. To evaluate the effect of non-straight cell edges, the elastic moduli and strengths of regular hexagonal honeycombs with curved cell edges are normalized by those of same relative-density regular hexagonal honeycombs with straight cell edges. It is found that the normalized elastic moduli and strengths of regular hexagonal honeycombs decrease with increasing cell curvature and waviness. Meanwhile, the decreases of the normalized elastic moduli and strengths of regular hexagonal honeycombs with circular or sinusoidal cell edges are found to be only dependent on cell curvature and waviness, regardless of their relative density.
[1] L.J. Gibson and M.F. Ashby, “Cellular Solids: Structure and properties,” 2nd edition, Cambridge University Press. (1997).
[2] J.L. Grenestedt, “Influence of wavy imperfections in cell walls on elastic stiffness of cellular solids,” J. Mech. Phys. Solids 46, 29-50 (1998).
[3] C. Chen, T.J. Lu and N.A. Fleck, “Effect of imperfections on the yielding of two-dimensional foams,” Int. J. Mech. Sci. 43, 487-504 (2001).
[4] A.E. Simone and L.J. Gibson, “Effects of solid distribution on the stiffness and strength of metallic foams,” Acta Mater. 46(6): 2139-2150 (1998).
[5] Y.Y. Hsieh and S.T. Mau, “Elementary Theory of Structures, ” 4th edition, Prentice Hall (1995).
[6] Jibbitt, Karlsson and Sorensen, Inc. “Abaqus/Standard user’s manual.”