| 研究生: |
陳祐誠 Chen, You-Cheng |
|---|---|
| 論文名稱: |
氣候變異下流域地下水資源合理使用之研究 The study of utilizing groundwater resources under the impacts of climate variation |
| 指導教授: |
徐國錦
Hsu, Kuo-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 安全出水量 、MODFLOW-SURFACT 、知本溪流域 |
| 外文關鍵詞: | safe yield, MODFLOW-SURFACT, Chih-Ben basin |
| 相關次數: | 點閱:137 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來台灣地區受到氣候變遷的影響,雨量出現減少或持平而降雨量日數減少的現象。由於降雨是台灣地區之主要淡水資源,雨量變化直接衝擊水資源可利用量,因此,水資源受到氣候變異衝擊之影響,必須加以了解,方能因應氣候變化之挑戰。本研究以知本溪流域為研究區域,探討氣候變異下流域地下水資源合理之使用,以地質資料進行知本溪流域水文地質模式的建構,配合MODFLOW-SURFACT數值模擬軟體程式進行地下水流模擬,並透過有效入滲法推估數值模式所需之補注量,經由地下水位及同位素資料進行模式率定與驗證,經歷年資料模擬結果顯示,知本地區地表補注量約0.55億噸/年,抽水量約1.16百萬噸/年,邊界出水量約0.5億噸/年。中、上游山麓區域水位下降情況比下游平原區域更為明顯,對生態可能造成衝擊,最後透過模式對於不同氣候狀態進行希祿氏法安全出水量之模擬,得到流域內下游地區降雨量、補注量與安全出水量之關係式,此關係式應可作為未來不同氣候條件下對下游地區安全出水量評估之依據,但考量流域生產、生態、與生活之發展,知本流域水資源之利用仍應審慎全面規劃。
The groundwater resources becomes more valuable due to the influence of global climate change in recently years. Since the rainfall is the main fresh water source in Taiwan. This study explores the available groundwater resources in Chih-Ben basin under the impact of climate variation. A hydrogeological model is constructed based on the geology data. The recharge is estimated by using the concept of effective infiltration; A numerical modeling using MODFLOW-SURFACT is performed after model is calibrated and validated. The results show that the recharge of Chih-Ben watershed is about 55 million tons, the pumping is about 1.16 million tons, and the outflow from the watershed is about 50 million tons. The results also show that water resources in upstream and midstream is more vulnerable than in downstream. The decrease of water resource in upstream and midstream might result in the damage in soil and ecosystems of the basin. We simulate the safe yield under various climate condition. A relationship between rainfall and safe yield is constructed. The relationship can be used estimate the safe yield in various climate conditions in Chih-Ben. When the production, living and ecology of Chih-Ben basin are considered, the water resources still should be carefully evaluated.
[1]Ahmad, A. F. and R. Langford, Applications of Particle-tracking techniques to bank infiltration: a case study from EL Paso, Texas, USA, Environ Geol 55:505-515, 2008.
[2]Allen, D. M. and D. C. Mackie, Groundwater and Climate change : a sensitivity analysis for the Grand Forks aquifer, southern British Columbia, Canada, Hydrogeology Journal, 12:270-290, DOI 10.1007 /s10040-003-0261-9, 2004.
[3]Anderson, M.P. and W.W. Woessner, Applied groundwater modeling : simulation of flow and advective transport, Academic Press, Inc, California, 1992.
[4]Arnold, J. G. and R.S. Muttiah, Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin, Journal of Hydrology, 227 21-40, 2000.
[5]Berninkmeijer, C.A.M., P. Kraft, and W.G.Mook, Oxygen isotope fractionation between and . Isot. Geosci., 1:181-190, 1983.
[6]Brouyere, S. and G. Carabin, Climate change impacts on groundwater resources : modeled deficits in a chalky aquifer, Geer basin, Belgium, Hydrogeology Journal, 12:123-134, DOI 1007 /s10040 – 003 - 0293-1, 2004.
[7]Coleman, M.L., T.J. Shepherd, J.J. Durham, J.E. Rouse, and G.R. Moore, Reduction of water with zinc for hydrogen isotope analysis, Anal. Chem., 54:993-995, 1982.
[8]Craig, H., Isotopic variations in meteoric water, Science, 133:1702-1703, 1961
[9]Daniel, C. C. III and P. R. Dahlen, Preliminary hydrogeologic assessment and study plan for a regional Ground-Water resource investigation of the blue ridge and piedmont provinces of North Carolina, U.S. Geological Survey, Water-Resources Investigations Report 02-4105, 2002.
[10]Dansgaard, W., Stable isotopes in precipitation, Tellus, 16, p.436-468, 1964.
[11]Epstein, S. and T. Mayeda, Variation of content of waters from natural sources. Geochim. Cosmochim Acta, 4, P.213-224, 1953.
[12]Fan, Y. and L. Toran, Groundwater flow and groundwater-stream interaction in fractured and dipping sedimentary rocks: Insight from numerical models, Water Resources Research, Vol.43, 2007.
[13]Gat, J.R., Groundwater. In: J.R. Gat and Gonfiantini(eds.), Stable Isotope Hydrology : deuterium and oxygen-18 in the water cycle, IAEA, Vienna, Tech. Rep. Ser. NO.210, 1981.
[14]Gat, J.R., The isotopes of hydrogen and oxgen in precipitation. In : P. Fritz and J. Ch. Fontes(eds.), Handbook of Environmental Isotope Geochenistry, P.21-47, 1980.
[15]Giggenbach, W.F., A.A. Minissale, and G. Scandiffio, Isotopic and chemical assessment of geothermal potential of the Colli Albani area, Latium region, Italy. Appl. Geochem., 3:475-486, 1988.
[16]Hoefs, J., Stable Isotope Geochemistry. 4th Ed., Spriger- Verlag, New York, 1987.
[17]Hsu, S. M. and C. J. Liu, Evaluation of Groundwater Resources in Feng-Lin Area by Modeling Hua-Lian Alluvial Valley, Journal of Chinese Agricultural Engineering Vol.52 No.3, 64-75, 2006.
[18]Hsu, K.C., C. H. Wang, K. C. Chen, C. T. Chen and K.W.Ma Climate-induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan, Hydrogeology Journal, DOI 10.1007/S10010-006-0137-x, 2007.
[19]I.A.E.A., Guidebook on nulear techniques in hydrology, Vienna, Tech Rep. Ser., No.91, 1983.
[20]Jacobus, J. d. V. and I. Simmers, Groundwater recharge : an overview of processes and challenges, Hydrogeology Journal, 10:5-17, DOI 10.1007/s10040-001-0171-7, 2002.
[21]Janik, C.J., A.H. Truesdell, F. Goff, L. Shevenell, M.L. Stallard, Jr.P.E. Trujillo and D. Counce, A geochemical model of the Platanares geothermal system, Honduras. In: F. Goff(Editor), Honduras-A Geothermal Investigation.J. Volcanol. Geotherm. Res., 45:125-146, 1991
[22]Kim, C. P. and J.N.M. Stricker, An analytical framework for the water budget of the unsaturated zone, Water Resources Research, Vol. 32, No12, 3475-3484, 1996
[23]Mendonca, L. A. R. and H. Frischkorn, Isotope measurements and ground water flow modeling using MODFLOW for understanding environmental changes caused by a well field in semiarid Brazil, Environ Geol 47:1045-1053, 2005.
[24]Palma, H. C. and L. R. Bentley, A regional-scale groundwater flow model for the Leon-Chinandega aquifer, Nicaragua, Hydrogeology Journal 15:1457-1472, 2007.
[25]Pollock, D. W., Use’sguide for MODPATH/MODPATH-PLOT, Version 3 :aparticle tracking post-processing package for MODFLOW, the U.S. Geological Survey finite-difference ground-water flow model, U.S. Geological Survey, 1994.
[26]Senturk, F., S. Bursali, Y. Omay, I. Ertan, S. Guler, H. Yalcin, and E. Onhan, Isotope techniques applied to groundwater movement in the Konia plain. In: Isotope Hydrology 1970, IAEA, Vienna, p.153-161, 1970.
[27]Sophocleous, M., Interactions between groundwater and surface water : the state of he science, Hydrogeology Journal, 10:52-67, DOI 10.1007/s10040-001-0170-8, 2002.
[28]Sanford, W., Recharge and groundwater models : an overview, Hydrogeology Journal, 10:110-120, DOI 10.1007/s10040-001-0173-5, 2002.
[29]Salamon, P. and D. F.-Garcia, Modeling tracer transport at the MADE site: The importance of heterogeneity, Water Resources Research, Vol. 43, W08404, DOI:10.1029, 2007.
[30]Tiedeman, C. R. and D. J. Goode, Characterizing a Ground Water Basin in a New England Mountain and Valley Terrain, Ground Water, Vol.36 No.4,1998.
[31]Timpson, A. F. B. and S. F. Carle, Analysis of groundwater migration from artificial recharge in a large urban aquifer: A simulation perspective, Water Resources Research, Vol. 35, No. 10, 2981-2998, 1999.
[32]Van der Straaten, C. M. and W. G. Mook, Stable isotopic composition of precipition and climatic variability. In: Palaeoclimates and Palaeowaters, IAEA, Vienna, p.53-64, 1983.
[33]Wang, C. H., H. W. Yeh, P. S. Tsai, and S. F. Wu, Hydrogen stable isotope determination of water samples by zinc shot reduction. Institute of Earth Sciences, Academia Sinica, IESER93-005, Taipei, Taiwan, 1993.
[34]Zektser, I. S. and H. A. Loaiciga, Groundwater fluxes in the global hydrologic cycle: past, present and future, Journal of hydrology, vol.144, 405-427, 1993.
[35]丹桂之助,烏來統諸地層之討論並特論四棱砂岩層、白冷層、新高層之同時性(I)。台灣博物學會會報,第34卷,第248-249號,第174- 191頁,1944。
[36]丹桂之助,烏來統諸地層之討論並特論四棱砂岩層、白冷層、新高層之同時性(II)。台灣博物學會會報,第34卷,第250號,第215-223頁,1944。
[37]易任、王如意,應用水文學上冊,國立編譯館,茂昌圖書有限公司,2001。
[38]江崇榮、汪中和,以氫氧同位素組成探討屏東平原之地下水補注源,經濟部中央地質調查所彙刊第十五號,2002。
[39]林峰瑋,知本溪流域地下水資源評估研究,國立成功大學資源工程學系碩士論文,2006。
[40]汪中和,台灣降雨的長期變化及對環境的衝擊,自然與文化研討會,2004。
[41]汪中和,氣候變化對台灣地下水文環境的衝擊:回顧與前瞻,經濟部中央地質調查所特刊,第18號,第243-259頁,2007。
[42]陳冠志,異質性土壤中二相流及溶質傳輸行為之研究,國立成功大學資源工程所碩士論文,2001。
[43]陳尉平,應用河川流量歷線推估台灣地下水補注量,國立成功大學資源工程學系博士論文,2006。
[44]陳正達,「IPCC第一次分組之第四次評估報告:科學基礎-第10章「全球氣候變遷的推估」重點說明」,全球變遷通訊雜誌,第55期,pp.27-31,2007。
[45]蔡英傑,應用穩定同位素 資料於地下水模擬參數反推之研究,國立成功大學資源工程學系碩士論文,2006。
[46]台灣省水利局規劃總隊,台東縣水資源調查規劃,1996。
[47]何春蓀,台灣地質概論-台灣地質圖說明書,經濟部中央地質調查所,163頁,1986。
[48]李振誥、徐國錦,地下水補注與管理措施,工程,中國工程師學會會刊,第80卷,第6期,pp.80-99,2007。
[49]李振誥、徐國錦,知本溪、金崙溪地下水資源調查評估(1/2)工作成果報告書,經濟部水利署水利規劃試驗所,2007。
[50]信和行,台東縣知本溫泉渡假專用區基地地質調查及試驗分析工作報告書,東台灣之本溫泉世界股份有限公司,2004。
[51]能資所,台灣溫泉水資源之調查及開發利用(3/4),經濟部水利署,189頁,2002。
[52]曹以松,地下水,中國土木水利工程學會,1998。
[53]張秉權、曾鈞敏,「屏東平原地下水量變化之研究」,第八屆水利工程研討會,台北市,1996
[54]張伯勳,流域地下水補注量與補注潛能區之評估,國立成功大學資源工程學系碩士論文,2007
[55]葉信富、張伯勳、徐國錦、李振誥、汪中和,由氫氧穩定同位素特徵探討流域水文變化與補注來源,第十九屆環工年會暨第五屆土壤與地下水研討會,2007。
[56]郭瑋萍,知本地區溫泉資源調查分析之研究,國立成功大學資源工程學系碩士論文,2008
[57]鄭永飛、陳江峰,穩定同位素地球化學,北京:科學出版社,2000。
[58]譚仲哲、童慶斌,氣候變遷對台北地下水補注之衝擊,農業工程學報,Vol.54 No.1,2008
[59]礦研所,台灣地熱資源探勘工作報告之四、五。礦業研究所第174號 報告,1979。