| 研究生: |
鄭雅之 Cheng, Ya-Chih |
|---|---|
| 論文名稱: |
摻鐵氧化鋅薄膜之壓電性質研究 Characterization and Piezoelectric Properties of Fe-doped ZnO films |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 氧化鋅 、氧化鐵鋅 、雙靶磁控濺鍍 、壓電係數 |
| 外文關鍵詞: | Fe-doped ZnO, piezoelectric coefficient |
| 相關次數: | 點閱:112 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化鋅為寬能隙(3.3eV)n型半導體材料,具有多項優異特質且價格低廉使其被廣泛運用於各種用途中。氧化鋅因屬非對稱性結構而具有壓電特性,得以被用於製作壓電元件,例如:表面聲波元件、體聲波元件及由此兩種元件為基礎發展之通訊元件與感測元件。在壓電材料與其應用中,以往大量使用高壓電係數(d33)之鋯鈦酸鉛(PZT)等含有鉛元素之成分,近年人們因發現鉛對人體及環境的危害而捨棄含有鉛之材料,因此發展無鉛壓電材料替代PZT為現今的趨勢。
本實驗使用雙靶磁控共濺鍍系統沉積摻鐵氧化鋅薄膜於矽基板上,以提高薄膜之壓電係數。矽基板為半導體工業中最常使用之基板,選擇非壓電性之矽作為基板,雖無法利用壓電基板與壓電薄膜之間的交互作用來增加整體結構的壓電性,但因矽在CMOS製程上有高度相容性,故以未來發展之考量仍選擇矽為基材。實驗結果顯示,隨著鐵含量增加,氧化鐵鋅薄膜的d33值會增加,這是因為鐵離子置入鋅的晶格位置使薄膜顯微結構發生改變而使壓電性質有所提升。
具體而言,薄膜的C軸優選取向愈明顯,結晶性越好的結構,其壓電性質愈好。以雙靶射頻磁控共濺鍍沉積氧化鐵鋅薄膜,可成功沉積出具有高C軸取向之薄膜,且摻入鐵元素後薄膜之壓電係數也有明顯的提升,而d33最佳值為44.35pC/N出現於薄膜具有鐵含量為1.14 at. %時,約為未摻雜氧化鋅薄膜(13.04 pC/N)的4倍。
本研究亦對薄膜之顯微結構作探討,XRD結果顯示雙靶濺鍍可以成功製備C軸取向的氧化鋅摻鐵薄膜。隨著施加於氧化鐵靶的功率增加,薄膜中鐵含量增加在大於3.82 at. % 後,開始改變晶體結構之方式為使氧化鋅之(002)高C軸取向程度下降,並出現氧化鋅之(101)面及(100)面強度提升的趨勢。從SEM表面形貌亦可發現,在壓電係數最佳值(1.14 at. % Fe)時,薄膜具有較均勻的晶粒大小分布,而XPS對1.14 at. % Fe與3.82 at. % Fe的試片進行分析,結果顯示,壓電係數最佳值的試片(1.14 at. % Fe)中,鐵離子主要以+3的氧化態存在,而壓電係數急遽下降的試片(3.82 at. %)中,鐵則是主要以+2價出現,+2價與+3價之鐵離子半徑不同,因置換原本的晶格位置後,對結構造成不同程度的扭曲,使得壓電係數跟著提升與下降。
Fe-doped ZnO films are potential materials for acoustic wave devices because of its piezoelectric coefficient improvement gained from the substitution of Fe atoms for Zn sites which caused lattice distortion and induced a larger response in piezoelectricity. In this research, FexZn1-xO films were deposited by magnetron co-sputtering technique. The X-ray diffraction results showed highly c-axis preferred orientation FexZn1-xO films. SEM confirmed that the films are column-like and perpendicular to the substrate. Then, the piezoelectric coefficient (d33) was improved with the films. With Fe added into ZnO films, the optimal d33 value, 44.35 pC/N was achieved at 1.14 at. % Fe concentration.
[1]L. Rayleigh, "On waves propagated along the plane surface of an elastic solid," Proceedings of the London Mathematical Society, vol. 17, pp. 4-11, 1885.
[2]R. M. White and F. W. Voltmer, "Direct Piezoelectric Coupling to Surface Elastic Waves," Applied Physics Letters, vol. 7, p. 314, 1965.
[3]M. Akiyama, T. Kamohara, K. Kano, A. Teshigahara, Y. Takeuchi, and N. Kawahara, "Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering," Adv Mater, vol. 21, pp. 593-6, Feb 2 2009.
[4]S. Zhang, R. Xia, L. Lebrun, D. Anderson, and T. R. Shrout, "Piezoelectric materials for high power, high temperature applications," Materials Letters, vol. 59, pp. 3471-3475, 2005.
[5]J. A. Christman, R. R. W. Jr, A. I. Kingon, and R. J. Nemanich, "Piezoelectric measurements with atomic force microscopy," Applied Physics Letters, vol. Vol.73, 1998.
[6]Y. C. Yang, C. Song, F. Zeng, F. Pan, Y. N. Xie, and T. Liu, "V[sup 5+] ionic displacement induced ferroelectric behavior in V-doped ZnO films," Applied Physics Letters, vol. 90, p. 242903, 2007.
[7]Y. C. Yang, C. Song, X. H. Wang, F. Zeng, and F. Pan, "Cr-substitution-induced ferroelectric and improved piezoelectric properties of Zn[sub 1−x]Cr[sub x]O films," Journal of Applied Physics, vol. 103, p. 074107, 2008.
[8]J. T. Luo, Y. C. Yang, X. Y. Zhu, G. Chen, F. Zeng, and F. Pan, "Enhanced electromechanical response of Fe-doped ZnO films by modulating the chemical state and ionic size of the Fe dopant," Physical Review B, vol. 82, 2010.
[9]D. Karanth and H. Fu, "Large electromechanical response in ZnO and its microscopic origin," Physical Review B, vol. 72, 2005.
[10]P. Curie and J. Curie, "Development by pressure of Polar Electricity in Hemihedral Crystals with Inclined Faces," Bulletin de la Societe Mineralique de France, vol. 3, pp. 90-3, 1880.
[11]W. L. Hughes, "Synthesis and characterization of zinc oxide," Materials Science & Engineering, Georgia Institute of Technology, 2006.
[12]S. Kasap, Electronic materials and Devices. New York: McGraw-Hill, 2002.
[13]R. E. Eitel, "Novel Piezoelectric Ceramics- Development of High Temperature, High Performance Piezoelectrics on the Basis of Structure.," Doctor of Philosophy, Materials Science and Engineering, Pennsylvania State University, 2003.
[14]IEEE Standard on Piezoelectricity vol. IEEE Standard 176, 1987.
[15]Piezoelectric Ceramics: Principles and Applications.: APC International : Mackeyville, Pa., 2012.
[16]F. Calle, J. Pedrós, T. Palacios, and J. Grajal, "Nitride-based surface acoustic wave devices and applications," physica status solidi (c), vol. 2, pp. 976-983, 2005.
[17]J. T. Luo, F. Pan, P. Fan, F. Zeng, D. P. Zhang, Z. H. Zheng, et al., "Cost-effective and high frequency surface acoustic wave filters on ZnO:Fe/Si for low-loss and wideband application," Applied Physics Letters, vol. 101, p. 172909, 2012.
[18]H. Fabricius, T. Skettrup, and P. Bisgaard, "Ultraviolet detectors in thin sputtered ZnO," Applied Optics, vol. 25, 1986.
[19]Z. W. Pan, Z. R. Dai, and Z. L. Wang, "Nanobelts of Semiconducting Oxides," Science, vol. 291, 2001.
[20]Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, et al., "A comprehensive review of ZnO materials and devices," Journal of Applied Physics, vol. 98, p. 041301, 2005.
[21]O. Dulub, L. A. Boatner, and U. Diebold, "STM study of the geometric and electronic structure of ZnO(0001)-Zn, (0001)-O, (1010), and (1120) surfaces," Surface Science, vol. 519, pp. 201-217, 2002.
[22]M. W. Allen, S. M. Durbin, and J. B. Metson, "Silver oxide Schottky contacts on n-type ZnO," Applied Physics Letters, vol. 91, p. 053512, 2007.
[23]M. W. Allen, M. M. Alkaisi, and S. M. Durbin, "Metal Schottky diodes on Zn-polar and O-polar bulk ZnO," Applied Physics Letters, vol. 89, p. 103520, 2006.
[24]G. Ferblantier, F. Mailly, R. Al Asmar, A. Foucaran, and F. Pascal-Delannoy, "Deposition of zinc oxide thin films for application in bulk acoustic wave resonator," Sensors and Actuators A: Physical, vol. 122, pp. 184-188, 2005.
[25]J. B. Lee, H. J. Kim, S. G. Kim, C. S. Hwang, S.-H. Hong, Y. H. Shin, et al., "Deposition of ZnO thin films by magnetron sputtering for a film bulk acoustic resonator," Thin Solid Films, vol. 435, pp. 179-185, 2003.
[26]S. Sun, G. S. Tompa, C. Rice, X. W. Sun, Z. S. Lee, S. C. Lien, et al., "Metal organic chemical vapor deposition and investigation of ZnO thin films grown on sapphire," Thin Solid Films, vol. 516, pp. 5571-5576, 2008.
[27]W. D. Shao, X. F. Chen, W. Ren, P. Shi, X. Q. Wu, O. K. Tan, et al., "V-Doped ZnO Thin Films Prepared by RF Magnetron Sputtering," Ferroelectrics, vol. 406, pp. 10-15, 2010.
[28]W. Watera, S.-Y. Chu, Y.-D. Juang, and S.-J. Wu, "Li2CO3-doped ZnO films prepared by RF magnetron sputtering technique for acoustic device application," Materials Letters, vol. 57, pp. 998-1003, 2002.
[29]K. Sakurai, M. Kanehiro, K. Nakahara, T. Tetsuhiro, S. Fujita, and S. Fujita, "Effects of oxygen plasma condition on MBE growth of ZnO," Journal of Crystal Growth, vol. 209, pp. 522-525, 2// 2000.
[30]S. A. Azzez, Z. Hassan, J. J. Hassan, R. Perumal, A. M. Selman, and M. Bououdina, "Preparation of high quality Mg doped ZnO nanorod arrays with enhanced optical properties by MgO passivation," Optik - International Journal for Light and Electron Optics, vol. 127, pp. 9250-9258, 10// 2016.
[31]K. Iwata, P. Fons, S. Niki, A. Yamada, K. Matsubara, K. Nakahara, et al., "ZnO growth on Si by radical source MBE," Journal of Crystal Growth, vol. 214–215, pp. 50-54, 6/2/ 2000.
[32]W. Zhaoyang, S. Liyuan, and H. Lizhong, "Effect of laser repetition frequency on the structural and optical properties of ZnO thin films by PLD," Vacuum, vol. 85, pp. 397-399, 9/24/ 2010.
[33]J. M. Ashfaq, B. C. Hu, N. Zhou, J. Shaibo, C. Y. Ma, and Q. Y. Zhang, "Extraordinary near-band-edge photoluminescence in the highly epitaxial ZnO films deposited by PLD," Journal of Luminescence, vol. 178, pp. 192-195, 10// 2016.
[34]C. Ristoscu, D. Caiteanu, G. Prodan, G. Socol, S. Grigorescu, E. Axente, et al., "Structural and optical characterization of undoped, doped, and clustered ZnO thin films obtained by PLD for gas sensing applications," Applied Surface Science, vol. 253, pp. 6499-6503, 5/30/ 2007.
[35]M. S. Al-Assiri, M. M. Mostafa, M. A. Ali, and M. M. El-Desoky, "Synthesis, structural and electrical properties of annealed ZnO thin films deposited by pulsed laser deposition (PLD)," Superlattices and Microstructures, vol. 75, pp. 127-135, 11// 2014.
[36]楊錦章, 基礎濺鍍電漿 vol. 72: 電子發展月刊(68期), 1983.
[37]S. M. Rosssnagel, J. J. Cuomo, and W. D. Westwood, Handbook of Plasma Processing Technology. Park Ridge, New Jersey: Noyes, 1989.
[38]D. M. Mattox, "Particle bombardment effects on thin-film deposition: A review," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 7, p. 1105, 1989.
[39]J. A. Thornton, "The microstructure of sputter‐deposited coatings," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 4, pp. 3059-3065, 1986.
[40]田民波, 薄膜技術與薄膜材料. 台北: 五南圖書出版股份有限公司, 2007.
[41]S. Ilican, Y. Özdemir, M. Caglar, and Y. Caglar, "Temperature dependence of the optical band gap of sol-gel derived Fe-doped ZnO films," Optik - International Journal for Light and Electron Optics, vol. 127, pp. 8554-8561, 2016.
[42]T. Pandiyarajan, R. Udayabhaskar, and B. Karthikeyan, "Role of Fe doping on structural and vibrational properties of ZnO nanostructures," Applied Physics A, vol. 107, pp. 411-419, 2012.
[43]Y. Q. Wang, L. Su, L. Liu, Z. M. Tian, T. Q. Chang, Z. Wang, et al., "Ferromagnetism in Fe-doped ZnO bulk samples with additional Cu doping," physica status solidi (a), vol. 207, pp. 2553-2557, 2010.
[44]R. Vinodkumar, I. Navas, S. R. Chalana, K. G. Gopchandran, V. Ganesan, R. Philip, et al., "Highly conductive and transparent laser ablated nanostructured Al: ZnO thin films," Applied Surface Science, vol. 257, pp. 708-716, 2010.
[45]A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanini, S. Menakh, Y. Bouachiba, et al., "Effect of Substrates on the Properties of ZnO Thin Films Grown by Pulsed Laser Deposition," Advances in Materials Physics and Chemistry, vol. 03, pp. 209-213, 2013.
[46]M. Tanahashi, M. Ito, M. Murao, and A. Iga, "Effect of Al-doping on the Grain Growth of ZnO," Jpn J. AppL. Phys., vol. 36, pp. 573-576, 1997.
[47]R. R. Reeber, "Lattice parameters of ZnO from 4.2° to 296°K," Journal of Applied Physics, vol. 41, pp. 5063-5066, 1970.
[48]Y. Okada and Y. Tokumaru, "Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K," Journal of Applied Physics, vol. 56, pp. 314-320, 1984.
[49]M.-T. Le, Y.-U. Sohn, J.-W. Lim, and G.-S. Choi, "Effect of Sputtering Power on the Nucleation and Growth of Cu Films Deposited by Magnetron Sputtering," Materials Transactions, vol. 51, pp. 116-120, 2010.
[50]P. Mills and J. Sullivan, "A Study of the core level electrons in iron and its three oxides by means of x-ray photoelectron spectroscopy," J.Phys. D, vol. 16, pp. 723-732, 1982.
校內:2022-08-30公開