| 研究生: |
謝政廷 Hsieh, Cheng-Ting |
|---|---|
| 論文名稱: |
不完美品質下新品與可回收再製造產品之缺貨後補存貨模型 Inventory Model for Recyclable Product with Backorder and Imperfect Quality |
| 指導教授: |
張秀雲
Chang, Shiow-Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 瑕疵產品 、可回收性產品 、存貨 、缺貨後補 |
| 外文關鍵詞: | Imperfect quality, Reusable product, Inventory, Backorder |
| 相關次數: | 點閱:92 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現今自由開放的競爭市場下,企業營運之目的主要是以降低成本、增加收益、提高產品價值及加強本身競爭力為主要目標,近年來,有鑒於全球暖化及環境保護課題逐漸普及,環境保護與產品回收之成本占整體總成本之比重日漸增加,該如何有效地把產品生命週期結束之產品進行回收再利用乃是製造商必須思考的一個問題,因此,如何能藉由回收產品之利用,來降低生產中之成本,將會成為現今企業增強本身市場競爭力之一大重點。
本研究主要探討可回收性產品之存貨系統,透過外購新品與再製造新品去滿足顧客之需求,並考慮外購產品中存在有瑕疵品之情形發生且存貨環境允許缺貨後補之條件,進而探討整體存貨模式。並推導本研究之最小成本數學模型,利用數學軟體程式作為其求解驗證工具,求解出外購新品之最適訂購量以及再製造流程前回收品之最佳存貨水準,以達整體總成本之最小化。
本研究主要藉由數學推導的方式,探討透過外購新品協同再製造產品滿足顧客的條件下,考慮外購新品中存在瑕疵品與存貨環境允許缺貨後補之情形,建立本研究之數學模型,並求解開始再製造流程之回收品最佳存貨水準與外購新品之產品最佳數量大小。且根據數值分析與敏感度分析可以發現影響單位時間之期望總成本的重要關鍵參數為顧客端之需求率、顧客端回收品之回收率、外購新品之檢驗速率以及外購新品中瑕疵品之重工率為影響生產之重要參數,因此企業必須更加注意這部分之變化,使此種模型可作為回收性產品管理之參考。
In recent years, global warming and environmental protection issues are getting severe. As the environmental protection and product recycling cost have risen, how to effectively carry out the product recycling is the issue that manufacturer must think about. Therefore, how to use recycled products to reduce the cost of production becomes a means to enhance the competitiveness of the major focus market for a business. This study focuses on the inventory systems of a recycle product. The demand is met with newly purchased and remanufactured products, and the purchased new products are considered to have imperfect quality. The shortages are allowed and unmet demand is backlogged. The mathematical software is used to find the optimal cycle time, the optimal lot size of purchasing and the number of purchases during the inventory cycle to minimize the total cost per unit time. Numerical examples and sensitivity analysis are carried out to analyze the key factors in the system. We found that the demand rate, the remanufacture rate and the inspection cost are important parameters that affecting the total cost per unit time. Therefore, companies must pay more attention to these changes in some factors.
中文部分:
鄭春生,1999年,品質管理,第二版,台北市:育友
蘇雄義,2000年,物流與運籌管理:觀念機能與整合
黃惠民、楊柏中,2007年,供應鏈存貨系統設計與管理: 觀念策略與個案研究
中華民國物流協會網址http://www.talm.org.tw/,2016年07月10日
中小企業綠色環保資訊網http://green.pidc.org.tw/news.php,2016年07月15日
美國供應鏈管理專業協會網址http://www.cscmp.org./,2016年09月01日
英文部分:
Alamri, A. A. (2011). Theory and methodology on the global optimal solution to a General Reverse Logistics Inventory Model for deteriorating items and time-varying rates. Computers & Industrial Engineering, 60(2), 236-247.
Al-Salmah, M. and Alsawafy, O. (2011). Economic order quantity for items with Two types of imperfect quality. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 2(1), 73-82.
Beamon, B. M. (1999). Designing the green supply chain. Logistics information management, 12(4), 332-342.
Chan, W. M., Ibrahim, R. N., & Lochert, P. B. (2003). A new EPQ model: integrating lower pricing, rework and reject situations. Production Planning & Control, 14(7), 588-595.
Chiu, Y. P. (2003). Determining the optimal lot size for the finite production model with random defective rate, the rework process, and backlogging. Engineering Optimization, 35(4), 427-437.
Chung, K. J., & Hou, K. L. (2003). An optimal production run time with imperfect production processes and allowable shortages. Computers & Operations Research, 30(4), 483-490.
Choi, D. W., Hwang, H., & Koh, S. G. (2007). A generalized ordering and recovery policy for reusable items. European Journal of Operational Research, 182(2), 764-774.
Das, C. (1977). The (S− 1, S) inventory model under time limit on backorders. Operations Research, 25(5), 835-850.
Eroglu, A., & Ozdemir, G. (2007). An economic order quantity model with defective items and shortages. International journal of production economics, 106(2), 544-549.
Fleischmann, M., Bloemhof-Ruwaard, J. M., Dekker, R., Van der Laan, E., Van Nunen, J. A., & Van Wassenhove, L. N. (1997). Quantitative models for reverse logistics: A review. European journal of operational research, 103(1), 1-17.
Fleischmann, M., Beullens, P., BLOEMHOF‐RUWAARD, J. M., & Wassenhove, L. N. (2001). The impact of product recovery on logistics network design. Production and operations management, 10(2), 156-173.
Giri, B. C., & Sharma, S. (2015). Optimizing a closed-loop supply chain with manufacturing defects and quality dependent return rate. Journal of Manufacturing Systems, 35, 92-111.
Goggin, K., Reay, E., & Browne, J. (2000). Modelling end-of-life product recovery chains-a case study. Production Planning & Control, 11(2), 187-196.
Hasanov, P., Jaber, M. Y., & Zolfaghari, S. (2012). Production, remanufacturing and waste disposal models for the cases of pure and partial backordering. Applied Mathematical Modelling, 36(11), 5249-5261.
Hu, T. L., Sheu, J. B., & Huang, K. H. (2002). A reverse logistics cost minimization model for the treatment of hazardous wastes. Transportation Research Part E: Logistics and Transportation Review, 38(6), 457-473.
Inderfurth, K., Lindner, G., & Rachaniotis, N. P. (2005). Lot sizing in a production system with rework and product deterioration. International Journal of Production Research, 43(7), 1355-1374.
Jaber, M. Y., & El Saadany, A. M. (2009). The production, remanufacture and waste disposal model with lost sales. International Journal of Production Economics, 120(1), 115-124.
Jaber, M. Y., & El Saadany, A. M. (2010). A production/remanufacturing inventory model with price and quality dependant return rate. Computers & Industrial Engineering, 58(3), 352-362.
Jaber, M. Y., & El Saadany, A. M. (2011). An economic production and remanufacturing model with learning effects. International Journal of Production Economics, 131(1), 115-127.
Jamal, A. M. M., Sarker, B. R., & Mondal, S. (2004). Optimal manufacturing batch size with rework process at a single-stage production system. Computers & Industrial Engineering, 47(1), 77-89.
Khan, M., Jaber, M. Y., & Bonney, M. (2011). An economic order quantity (EOQ) for items with imperfect quality and inspection errors. International Journal of Production Economics, 133(1), 113-118.
Kiesmüller, G. P. (2003). Optimal control of a one product recovery system with leadtimes. International Journal of Production Economics, 81, 333-340.
Koh, S. G., Hwang, H., Sohn, K. I., & Ko, C. S. (2002). An optimal ordering and recovery policy for reusable items. Computers & Industrial Engineering, 43(1), 59-73.
Konstantaras, I., & Papachristos, S. (2006a). Economic ordering quantity models for items with imperfect quality. International Journal of Production Economics, 100(1), 148-154.
Konstantaras, I., & Papachristos, S. (2006b). Lot-sizing for a single-product recovery system with backordering. International Journal of Production Research, 44(10), 2031-2045.
Konstantaras, I., & Papachristos, S. (2007). Optimal policy and holding cost stability regions in a periodic review inventory system with manufacturing and remanufacturing options. European Journal of Operational Research, 178(2), 433-448.
Konstantaras, I., & Papachristos, S. (2008a). A note on: Developing an exact solution for an inventory system with product recovery. International Journal of Production Economics, 111(2), 707-712.
Konstantaras, I., & Papachristos, S. (2008b). Note on: An optimal ordering and recovery policy for reusable items. Computers & Industrial Engineering, 55(3), 729-734.
Konstantaras, I., & Skouri, K. (2010). Lot sizing for a single product recovery system with variable setup numbers. European Journal of Operational Research, 203(2), 326-335.
Konstantaras, I., Skouri, K., & Jaber, M. Y. (2010). Lot sizing for a recoverable product with inspection and sorting. Computers & Industrial Engineering, 58(3), 452-462.
Mabini, M. C., Pintelon, L. M., & Gelders, L. F. (1992). EOQ type formulations for controlling repairable inventories. International Journal of Production Economics, 28(1), 21-33.
Oh, Y. H., & Hwang, H. (2006). Deterministic inventory model for recycling system. Journal of Intelligent Manufacturing, 17(4), 423-428.
Pentico, D. W., Drake, M. J., & Toews, C. (2011). The EPQ with partial backordering and phase-dependent backordering rate. Omega, 39(5), 574-577.
Pokharel, S., & Mutha, A. (2009). Perspectives in reverse logistics: a review. Resources, Conservation and Recycling, 53(4), 175-182.
Porteus, E. L. (1986). Optimal lot sizing, process quality improvement and setup cost reduction. Operations research, 34(1), 137-144.
Rabinowitz, G., Mehrez, A., Chu, C. W., & Patuwo, B. E. (1995). A partial backorder control for continuous review (r, Q) inventory system with Poisson demand and constant lead time. Computers & operations research, 22(7), 689-700.
Rardin, R. L. (1998). Optimization in operations research (Vol. 166). Upper Saddle River, NJ: Prentice Hall.
Richter, K. (1996 a). The EOQ repair and waste disposal model with variable setup numbers. European Journal of Operational Research, 95(2), 313-324.
Richter, K. (1996 b). The extended EOQ repair and waste disposal model. International Journal of Production Economics, 45(1), 443-447.
Rogers, D. S., & Tibben-Lembke, R. S. (1999). Going backwards: reverse logistics trends and practices (Vol. 2). Pittsburgh, PA: Reverse Logistics Executive Council.
Salameh, M. K., & Jaber, M. Y. (2000). Economic production quantity model for items with imperfect quality. International journal of production economics, 64(1), 59-64.
San-José, L. A., Sicilia, J., & García-Laguna, J. (2007). An economic lot-size model with partial backlogging hinging on waiting time and shortage period. Applied mathematical modelling, 31(10), 2149-2159.
Savaskan, R. C., Bhattacharya, S., & Van Wassenhove, L. N. (2004). Closed-loop supply chain models with product remanufacturing. Management science, 50(2), 239-252.
Shih, L. H. (2001). Reverse logistics system planning for recycling electrical appliances and computers in Taiwan. Resources, conservation and recycling, 32(1), 55-72.
Stock, J. R. (1998). Development and implementation of reverse logistics programs. In ANNUAL CONFERENCE PROCEEDINGS, COUNCIL OF LOGISTICS MANAGEMENT.--.
Teunter, R. H. (2001). Economic ordering quantities for recoverable item inventory systems. Naval Research Logistics, 48(6), 484-495.
Teunter, R. H. (2002). Economic order quantities for stochastic discounted cost inventory systems with remanufacturing. International Journal of Logistics, 5(2), 161-175.
Teunter, R. (2004). Lot-sizing for inventory systems with product recovery. Computers & Industrial Engineering, 46(3), 431-441.
Thierry, M., Salomon, M., Van Nunen, J., & Van Wassenhove, L. (1995). Strategie issues in product recovery management. California management review, 37(2), 114-135.
Wee, H. M., Yu, J., & Chen, M. C. (2007). Optimal inventory model for items with imperfect quality and shortage backordering. Omega, 35(1), 7-11.
Van Nunen, J. A., & Zuidwijk, R. A. (2004). E-enabled closed-loop supply chains. California Management Review, 46(2), 40-54.
Yang, P. C., Chung, S. L., Wee, H. M., Zahara, E., & Peng, C. Y. (2013). Collaboration for a closed-loop deteriorating inventory supply chain with multi-retailer and price-sensitive demand. International Journal of Production Economics, 143(2), 557-566.