簡易檢索 / 詳目顯示

研究生: 王峻凱
Wang, Chun-Kai
論文名稱: 透過事件鏈及樹狀知識圖譜建立多輪新聞對話系統
Multi-turn News Dialogue System Based On Event Chain And Tree-structure Knowledge Graph
指導教授: 盧文祥
Lu, Wen-Hsiang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 34
中文關鍵詞: 新聞知識圖譜聊天機器人事件抽取
外文關鍵詞: news, knowledge graph, chatbot, event extraction
相關次數: 點閱:158下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 網路發展日新月異,不僅多數新聞媒體網站已經發展成熟,網路新聞資料庫、訂閱服務或是對話機器人等新興的網路新聞服務也不斷推出,人們接收新聞的速度透過這些服務也大幅提升,在提升搜尋新聞的方便性的同時,也容易因大量的相似資訊而造成資訊過載。
    為了解決上述的問題,我們透過抽取並分析新聞內的主詞-動詞-受詞事件,並且基於廣義知網以及命名實體辨識,針對作為主詞或受詞的名詞片語進行分類,建立新聞事件結構。接著,我們透過新聞分類分群建立上層樹狀結構,在底層,我們透過時間、地點及事件結構連結不同新聞內的事件串成新聞事件鏈,形成樹狀新聞知識圖譜。
    最後,我們基於上述樹狀新聞知識圖譜建立一個新聞聊天對話系統,提供使用者結構化的新聞資訊。

    By the high development of internet, almost all the news media websites are mature. Many internet news services are released, such as internet news database, web news subscription or chat bot. The speed of people accepting information and news is more fast than before via these services. Despite high convenience of searching data, it might cause information overload.
    To solve the problem, we extract the subject-verb-object events of news. We classify the subjects and the object of events via E-Hownet and Name Entity Recognition (NER). We use class of subject and object to build event structure. Then, we make use of news classification and clustering to build tree-structure layer. Under the tree-structure layer, we build event chain by time, location and event structure. We build tree-structure knowledge graph after that.
    Finally, we build a news dialogue system based on the tree-structure knowledge graph. It provides structured news information.

    摘要 III Abstract IV Table of Content V List of Tables VIII List of Figures IX Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 3 1.3 Goal 4 1.4 Method 4 1.5 Contribution 5 1.6 Organization of this Dissertation 5 Chapter 2 Related Work 6 2.1 Event Extraction 6 2.2 Nature Language Understanding 6 2.3 News Clustering 7 Chapter 3 Method 8 3.1 System Framework 8 3.2 Data Collection 9 3.2.1 UDN Online News 9 3.3 Tools 10 3.3.1 CKIP Tagger and Parser 10 3.3.2 E-Hownet 10 3.4 Event Analysis Model 10 3.4.1 Noun Phrase Class Recognition 10 3.4.2 Preposition Processing 14 3.4.3 Event Extraction 16 3.4.4 Subject Inherent 16 3.5 Event-chain and Tree-structure Model 19 3.5.1 News Classification 19 3.5.2 News Clustering 21 3.5.3 Knowledge Graph Generation 21 3.6 Chat Bot Construction 23 3.6.1 Nature Language Understanding 23 3.6.2 Nature Language Generation 26 Chapter 4 Experiments 27 4.1 Dataset 27 4.2 The Evaluation Metrix 27 4.3 Performance on Noun Phrase Classification 28 4.3.1 Experiment Setup 28 4.3.2 Experiment Result 28 4.3.3 Error Analysis 28 4.4 Performance on Event Extraction 29 4.4.1 Experiment Setup 29 4.4.2 Experiment Result 29 4.4.3 Error Analysis 29 4.5 Performance on Subject Inherent 30 4.5.1 Experiment Setup 30 4.5.2 Experiment Result 30 4.5.3 Error Analysis 30 Chapter 5 Conclusion 32 5.1 Conclusion 32 5.2 Future Work 32 Reference 33

    [1] “2019 台灣網路報告,” 2019. [線上]. Available: https://report.twnic.tw/2019/assets/download/TWNIC_TaiwanInternetReport_2019_CH.pdf.
    [2] “自由時報,” 自由時報, [線上]. Available: https://www.ltn.com.tw/.
    [3] “蘋果日報首頁,” 蘋果日報, [線上]. Available: https://tw.appledaily.com/home/.
    [4] “Google trends,” [線上]. Available: https://trends.google.com.tw/trends/explore?date=2010-01-01%202020-08-27&q=chatbot.
    [5] Delia Rusu, Jozef Stefan Institute and Jozef Stefan International Postgraduate School, James Hodson, Anthony Kimball, Unsupervised Techniques for Extracting and Clustering Complex Events, 2014.
    [6] Chen Lin, Chun Lin, Jingxuan Li, Dingding Wang, Yang Chen, Tao Li, “Generating event storylines from microblogs,” 於 ACM international conference, 2012.
    [7] Katsiaryna Stalpouskaya, Christian Baden, “To Do or Not to Do: the Role of Agendas for Action in Analyzing News Coverage of Violent Conflict,” 於 ACL, 2015.
    [8] 許孟淵 黃純敏, 以本體論為基礎之新聞事件檢索與瀏覽, 2006.
    [9] Y.-H. Cheng, News Bot: A Conversational News Service Based On Event-centric Knowledge Graphs and E-HowNet, 2017.
    [10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 2019.
    [11] Chuan-Jie Lin, Hsin-Hsi Chen, Che-Chia Liu, Jin-He Tsai, Hong-Jia Wong, Open-Domain Question Answering on Heterogeneous Data, 2001.
    [12] David M. Blei, Andrew Y. Ng, Michael I. Jordan, “Latent Dirichlet Allocation,” Journal of Machine Learning Research 3, 2003.
    [13] Gevorg Poghosyan and Georgiana Ifrim, Real-time News Story Detection and Tracking with Hashtags, 2016.
    [14] “E-HowNet,” [線上]. Available: http://ehownet.iis.sinica.edu.tw/.
    [15] “聯合新聞網,” 聯合報, [線上]. Available: https://udn.com/news/index.
    [16] “CkipTagger,” [線上]. Available: https://github.com/ckiplab/ckiptagger.
    [17] Daniel Ramage, David Hall, Ramesh Nallapati and Christopher D. Manning, Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora, Computer Science Department, Stanford University.
    [18] Remi Bois ´ and Guillaume Gravier, Eric Jamet and Maxime Robert, Emmanuel Morin, Pascale Sebillot, “Language-based Construction of Explorable News Graphs for Journalists,” 於 20th International Conference on Computational. Linguistics pages 50–56, 2010.
    [19] Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker, Pascal Poupart, Diachronic Embedding for Temporal Knowledge, 2019.
    [20] Zhaohui Wu, Chen Liang, C. Lee Giles, The Pennsylvania State University, Storybase: Towards Building a Knowledge Base for News Events, 2015.

    無法下載圖示 校內:2025-09-03公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE