簡易檢索 / 詳目顯示

研究生: 游佳玲
Yu, Chia-Ling
論文名稱: 去增益現象與記憶遺忘相關性之機轉探討
Studies of the relationship between depotentiation and memory forgetting
指導教授: 許桂森
Hsu, Kuei-Sen
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 121
中文關鍵詞: 去增益現象
外文關鍵詞: DEP, LTP, LTD, DHPG
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 長期增益現象(Longterm potentiation;LTP)是一種被認為與學習及記憶有關的一種細胞分子機制。然而其與學習及記憶形成的相關性如何,仍有待了解。我們實驗室在過去幾年來,已證實長期增益現象並非穩定不變的。倘若在其誘發後的早期給予低頻電刺激或不同的藥物處理,是可以將其逆轉(reverse)的,此現象稱為去增益現象(Depotentiation)。然而去增益現象的生理意義為何?是否與記憶的遺忘(Forgetting)有關,則是我們有興趣進一步探討的課題。
    在我的實驗中,採用(S)-3,5-dihydroxyphenylglycine (DHPG)來活化GroupⅠ代謝型glutamate受體(mGluRs),在大鼠海馬迴CA1區域誘發去增益現象的表現,並以電氣生理學及西方點墨法來探求其可能的作用機轉。我們發現DHPG所誘發的去增益現象具有下列特性。第一、DHPG所誘發的去增益現象為time-dependent。第二、DHPG係透過活化mGluR5來產生去增益作用。第三、DHPG所誘發的去增益現象需要p38 Mitogen-activated protein kinase(p38 MAPK)的參與。第四、此為rapamycin-sensitive proteintranslationdependent型式的去增益現象。第五、此去增益現象需要local protein synthesis。同時以西方點墨法發現,surface AMPA receptor的表現量減少有明顯的情形。另一方面我們也使用埋管的方式在大鼠海馬迴CA1區域給予DHPG,並利用被動性動物逃避學習試驗來驗證其生理意義。實驗結果顯示,在學習之前15分給予DHPG,或者是學習後的1、3、6、9、12小時給予DHPG,都會使其有逃避記憶有明顯受損的情形。此外,西方點墨法發現在學習之後會有cAMP response element-binding protein(CREB)磷酸化表現增加的情形,然而在學習後給予DHPG活化 mGluR5卻會抑制CREB磷酸化增加的情形。
    而我們也進一步去探討DHPG誘發長期抑制現象作用(long-term depression;LTD)機轉,發現DHPG是透過活化mGluR5來產生LTD,並且不需要extracellular signal-regulated kinase(ERK)及Jun-NH2-terminal kinase(JNK)的參與,但是需要透過P38 MAPK參與及伴隨有P38 MAPK磷酸化增加跟tyrosine phosphatase參與其中。由全細胞記錄實驗結果可知,DHPG作用可能是透過G protrin  subunit 的作用產生。但由免疫沉澱法實驗結果得知,P38 MAPK和G protrin  subunit並沒有相互活化作用(association)。因此DHPG誘發長期抑制現象可能是透過mGluR5去結合上G protrin  subunit,再透過一個未知的激酶將P38 MAPK磷酸化,再活化下游的訊息路徑,進而促進endocytosis,導致surface AMPA receptor表現量減少。
    總結以上實驗,大鼠海馬迴CA1區域給予GroupⅠ代謝型glutamate受體作用劑DHPG,會活化 mGluR5及P38 MAPK。而G protrin  subunit-coupled signaling pathway 也參與在DHPG活化P38 MAPK過程,最後導致surface AMPA receptor表現量減少。在生理意義上,去增益現象的作用機轉可能參與了記憶的獲得(acquisition)、固化作用(consolidation)及reconsolidation作用機轉,但是不參與在記憶的回想(retrieval)。而mGluR5可能是記憶儲存的負向調控者(negative regulator)。

    Long-term potentiation (LTP) is generally assumed to be a synaptic mechanism underlying learning and memory formation, the processes involved in the depression of synaptic potentiation may contribute to the mechanisms of memory loss or forgetting. However, the relationship between depotentiation and memory forgetting remains to be established.
    The ability of activation of group I metabotropic glutamate receptor (mGluR) to induce depotentiation was investigated at the Schaffer collateral-CA1 synapses of rat hippocampal slices. Brief bath application of group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG) (10 µM) for 5min induced a long-term depression of synaptic transmission or depotentiation (DEP) of previously established long-term potentiation (LTP). This DHPG-DEP was observed when DHPG was delivered 3 min after LTP induction. However, when DHPG was applied at 10 or 30 min after LTP induction, significantly less depotentiation was found. DHPG-DEP (1) is time dependent, (2) requires mGluR5 activation, (3) requires p38 MAPK activation, (4) requires rapamycin-sensitive mRNA translation signaling, (5) requires local protein synthesis. Moreover, the expression of DHPG-DEP is associated with a reduction in the increase of the surface expression of AMPA receptors seen with LTP. To investigate the functional relevance of DEP in the information storage of the mammalian brain, we did the one-trail step-down inhibitory avoidance training test. DHPG was administrated into the CA1 region of the dorsal hippocampus at various time before and after training. DHPG infused bilaterally into CA1 caused memory deficits when given before training (-15 min) or +1, +3, +9, or +12 hr after training. Following an inhibitory avoidance training, there were a significant increase in the phosphorylation of the transcription factor cAMP response element-binding protein (CREB) at Ser-133 in the CA1 region. Consistent with the behavioral observations, DHPG infused bilaterally into CA1 region also attenuated this enhancement effectively.
    In this work, we further show that the induction of DHPG-LTD is dependent on the activation of mGluR5, P38 MAPK and tyrosine phosphatase. Also, a G subunit-coupled signaling pathway is functionally involved in the activation of p38 MAPK caused by DHPG.
    In conclusion, we have shown that selective activation of group I mGluRs, and of mGluR5 in particular, induces a novel form of DEP. This DHPG-DEP is mechanistically distinct from previously reported forms of hippocampal CA1 DEP evoked under identical conditions and is expressed via a protein synthesis-dependent change of the postsynaptic AMPA receptor expression. These results suggest that the processes involved in the depression of synaptic potentiation may contribute to the mechanisms of memory loss or forgetting and the activation of postsynaptic mGluR5 may be negative regulator in memory formation.

    中文摘要 4 英文摘要 8 縮寫檢索表 11 第一章 緒論 13 第二章 材料及方法 28 一 實驗動物 29 二 方法 30 第一節 腦切片的製備 30 第二節 電氣生理學記錄法 31 Ⅰ、 胞外電氣生理學記錄法32 Ⅱ、 胞內電氣生理學記錄法32 Ⅲ、 統計方法 33 Ⅳ、 藥物之來源與製備 34 第三節 手術 35 第四節 逃避學習試驗動物模式 35 第五節 西方點墨法 37 第六節 二維電泳凝膠及銀染 43 第三章 實驗結果 48 第四章 討論 69 第五章 圖表 80 參考文獻 107 圖表索引 120 自述 121

    Abel T, Lattal MK (2001) Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr. Opin. Neurobiol. 11:180-187.

    Abraham WC, Bear MF (1996) Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 19:126-130.

    Adams JP, Sweatt JD (2002) Molecular psychology: role for the ERK MAP kinase cascade in memory. Annu. Rev. Pharmacol. Toxical. 42: 135-163.

    Arai A, Kessler M, Lynch G (1990a) The effect of adenosine on the development of long-term potentiation. Neurosci. Lett. 119:41-44.

    Arai A, Larson J, Lynch G (1990b) Anoxia reveals a vulnerable period in the development of long-term potentiation. Brain Res. 11:353-357.

    Anwyl R (1999) Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res. Rev. 29:83-120.

    Barrionuevo G, Schottler F, Lynch G (1980) The effect of repetitive low frequency stimulation on control and "potentiated" responses in the hippocampus. Life Sci. 27:2385-2391.

    Bashir, ZI (2003) On long –term depression induced by action of G-protein coupled receptor. Neurosci. Res. 45:363-367.

    Bear MF, Abraham, WC (1996) Long-term depression in hippocampus. Annu. Rev. Neurosci. 19:437-462.

    Bear MF, Malenka RC (1994) Synaptic plasticity:LTP and LTD. Curr. Opin. Neurobiol. 4:389-399.

    Berridge MJ (1993) Inositol triphosphate and calciumsignaling. Nature 361:315-325.

    Barry MF, Ziff EB (2002) Receptor trafficking and the plasticity of excitatory synapses. Curr. Opin. Neurobiol. 12:279-286.

    Bernabeu R, Bevilaqua L, Ardenghi P, Bromberg E, Schmitz P, Bianchin M, Izquierdo I, Medina JH (1997) Involvement of hippocampal cAMP/cAMP-dependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats. Proc Natl Acad Sci USA 1997 94:7041-7046.

    Bliss TV, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant pathway. J. Physiol (Lond) 232:331-356.

    Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31-39.

    Bittar P, Muller D (1993) Time-dependent reversal of long-term potentiation by brief cooling shocks in rat hippocampal slices. Brain Res. 620:181-188.

    Bolshakov VY, Siegelbaum SA (1994) Postsynaptic induction and presynaptic expression of hippocampal long-term depression. Science 264:1148-1152.

    Bolshakov, V.Y., Carboni, L., Cobb, M.H., Siegelbaum, S.A, Belardetti, F. (2000) Dual MAP kinase pathways mediate opposing forms of long-term plasticity at CA3-CA1 synapses. Nat.Neurosci. 3:1107–1112.

    Bordi F, Ugolini A, (1999) Group I metabotropic glutamate receptors: implications for brain diseases. Prog. Neurobiol. 59:55-79.

    Bourtchouladze R, Abel T, Berman N, Gordon R, Lapidus K, Kandel ER (1998) Different training procedures recruit either one or two critical periods for contextual memory consolidation, each of which requires protein synthesis and PKA. Learn Mem. 5:365-374.

    Calabresi P, Pisani A, Mercuri NB, Bernardi G (1992) Long-term potentiation in the striatum is ummasked by removing the voltage-dependent magnesium block of NMDA receptor channels. Eur. J. Neurosci. 4:929-935.

    Carew TJ, Sutton MA (2001) Molecular stepping stones in memory consolidation. Nat. Neurosci. 4:769-71.

    Carroll, R.C., Lissin, D.V., von Zastrow, M., Nicoll, R.A., Malenka, R.C. (1999) Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nat. Neurosci. 2:454-460.

    Carroll RC, Beattie EC, von Zastrow M, Malenka RC (2001) Role of AMPA receptor endocytosis in synaptic plasticity. Nat. Rev. Neurosci. 2:315-324.

    Choi DW, Rothman SM (1990) The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu. Rev. Neurosci. 13:171-182.

    Chung HJ, Xia J, Scannevin RH, Zhang X, Huganir RL (2000) Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain-containing proteins. J. Neurosci. 20:7258-7267.

    Coan EJ, Collingridgr GL (1985) Magnesium ions block an N-methyl-D-aspartate receptor-mediated component of synaptic transmission in rat hippocampus. Neurosci. Lett. 53:21-26

    Conn PJ, Pin JP (1997) Pharmacology and function of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 37:205-237.

    Daw MI, Chittajallu R, Bortolotto ZA, Dev KK, Duprat F, Henley JM, Collingridge GL, Isaac JT (2000) PDZ proteins interacting with C-terminal GluR2/3 are involved in a PKC-dependent regulation of AMPA receptors at hippocampal synapses. Neuron 28:873-886.

    Dingledine R, Hynes MA, King GL (1986) Involvement of N-methyl-D-aspartate receptors in epileptiform burst firing in the rat hippocampal slice. J. Physiol. (Lond) 380:175-189.

    Dudek SM, Bear MF (1993) Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J. Neurosci. 13:2910-2918.

    Fujii S, Saito K, Miyakawa H, Ito K, Kato H (1991) Reversal of long-term potentiation (depotentiation) induced by tetanus stimulation of the input to CA1 neurons of guinea pig hippocampal slices. Brain Res 555:112-122.

    Fitzjohn SM, Kingston AE, Lodge D, Collingridge GL (1999) DHPG-induced LTD in area CA1 of juvenile rat hippocampus; characterization and sensitivity to novel mGlu receptor antagonists. Neuropharmacology 38:1577-1583.

    Gean PW, Chang FC, Huang CC, Lin JH, Way LJ (1993) Long-term enhancement of PSP and NMDA receptor-mediated synaptic transmission in the amygdala. Brain Res. Bull. 31:7-11.

    Gingras AC, Kennedy SG, O'Leary MA, Sonenberg N, Hay N (1998) 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev. 12:502-513.

    Gold PE (1986) The use of avoidance training in studies of modulation of memory storage. Behav. Neural Biol. 46:87-98.

    Hagemann C, Blank JL, (2001) The ups and downs of MEK kinase interactions Cell Signal. 13:863-75.

    Harris EW, Cotman CW (1986) Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl-D-aspartate antagonists. Neurosci. Lett. 70:132-137.

    Harper SJ, LoGrasso P (2001) Signalling for survival and death in neurones: the role of stress-activated kinases, JNK and p38. Cell Signal. 13:299–310.

    Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287:2262-2267.

    Herron CE, Lester RAJ, Coan EJ, Collingridge GL (1986) Frequency-dependent involvement of NMDA receptors in the hippocampus: a novel synaptic mechanism. Nature (Lond) 322:265-268.

    Hestrin S, Nicoll RA, Perkel DJ, Sah P (1990) Analysis of excitatory synaptic action in pyramidal using whole-cell recording from rat hippocampal slices. J. Physiol. (Lond) 422:203-225.

    Huang CC, Liang YC, Hsu KS (1999) A role for extracellular adenosine in time-dependent reversal of long-term potentiation by low-frequency stimulation at hippocampal CA1 synapses. J. Neurosci. 19:9728-9738

    Huang CC, Liang YC, Hsu KS (2001) Characterization of the mechanism underlying the reversal of long-term potentiation by low-frequency stimulation at hippocampal CA1 synapses. J. Biol. Chem. 276:48108-48117

    Huber KM, Kayser MS, Bear MF(2000)Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science 288:1254-1257.

    Huber KM, Roder JC, Bear MF (2001) Chemical induction of mGluR5- and protein synthesis-dependent long-term depression in hippocampal area CA1. J Neurophysiol. 86:21-325.

    Igaz LM, Vianna MR, Medina JH, Izquierdo I.(2002) Two time periods of hippocampal mRNA synthesis are required for memory consolidation of fear-motivated learning. J Neurosci. 22:6781-6789.

    Impey S, Obrietan K, Storm DR (1999) Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity. Neuron 23:11–14.

    Isaac JT, Nicoll RA, Malenka RC (1995) Evidence for silent synapses: implications for the expression of LTP. Neuron 15:427-434.

    Izquierdo, I.(1989) Different gorms of post-training memory processing Behav. Neural Biol. 51:171-202.

    Izquierdo I, Medina JH.(1997) Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol Learn Mem. 68:285-316.

    Liao D, Hessler NA, Malinow R (1995) Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375:400-404.

    Lujan R, Nusser Z, Roberts JD, Shigemoto R, Somogyi P(1996) Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur. J. Neurosc.i 8:1488-1500.

    Lujan, R., Roberts, J.D., Shigemoto, R., Ohishi, H., Somogyi, P.(1997) Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1 alpha, mGluR2 and mGluR5, relative to neurotransmitter release sites. J. Cheml. Neuroanatomy 13:219-241.

    Luscher C, Nicoll RA, Malenka RC, Muller D.(2000) Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat. Neurosci.3:545-550.

    Lüscher C, Xia H, Beattie EC, Carroll RC, Zastrow VM, Malenka RC, Nicoll RA (1999) Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24:649-658.

    Lüthi A, Chittajallu R, Duprat F, Palmer MJ, Benke TA, Kidd FL, Henley JM, Isaac JT, Collingridge GL(1999) Hippocampal LTD expression involves a pool of AMPARs regulated by the NSF–GluR2 interaction. Neuron 24:389-399.

    Man YH, Lin JW, Ju WH, Ahmadian G, Liu L, Becker LE, Sheng M, Wang YT (2000)Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization. Neuron 25:649-662.

    Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci. 25:103-126.

    Malenka RC, Nicoll RA (1993) NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanism. Trends Neirosci. 16:521-527.

    Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649-711.

    Mannaiona G., Marion M.J, Valenti O, Traynelis SF, Conn P.J.(2001) Metabotropic Glutamate receptor 1 and 5 regulate CA1 pyramidal cell function. The Journal of Neuroscience 21:5925-5934.

    Matynia A, Kushner SA, Silva AJ (2002) Gentic Apporaches to Molecular and Cellular Cognition: A Focus on LTP and Learning and Memory Annu Rev Genet. 36:687-720.

    Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurons. Nature (Lond) 309:261-263.

    Mazzucchelli C , Brambilla R (2000) Ras-related and MAPK signalling in neuronal plasticity and memory formation. Cell. Mol. Life Sci. 57:604–611.

    McGaugh JL(2000)Memory--a Century of Consolidation. Science 287: 248-251.

    Moult PR, Schnabel R, Kilpatrick IC, Bashir ZI, Collingridge GL (2002) Tyrosine dephosphorylation underlies DHPG-induced LTD. Neuropharmacology. 43:175-80.

    Mulkey RM, Malenka RC (1992) Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of hippocampus. Neuron 9:967-975.

    Murray HJ, O'Connor JJ (2003) A role for COX-2 and p38 mitogen activated protein kinase in long-term depression in the rat dentate gyrus in vitro. Neuropharmacology. 44:374-80.

    Nakanishi S(1994) Metabotropic glutamate receptors:synaptic transmission, modulation and plasticity. Neuron 13:1031-1037.

    Nave BT, Ouwens DM, Withers DJ, Aless DR ,Shepherd PR (1999) Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation .Biochem. J. 344:427-431.

    Newton H, Woo , Nguyen PV(2003)Protein Synthesis Is Required for Synaptic Immunity to Depotentiation. J. Neurosci. 23:1125-1132.

    Passafaro M, Piech V, Sheng M (2001) Subunit-specific temporal and spatial patterns of AMPAreceptor exocytosis in hippo-campal neurons. Nat. Neurosci. 4:917–926.

    Palmer MJ, Irving AJ, Seabrook GR, Jane DE, Collingridge GL (1997) The group I mGlu receptor agonist DHPG induces a novel form of LTD in the CA1 region of the hippocampus. Neuropharmacology 36:1517-1532.

    O'Dell T, Kandel E (1994) Low-frequency stimulation erases LTP through an NMDA receptor-mediated activation of protein phosphatases. Learn Mem 1:129-139.

    Oliet SH, Malenka RC, Nicoll RA (1997) Two distinct forms of long-term depression coexist in CA1 hippocampal pyramidal cells. Neuron 18:969-982.

    Ottersen OP, Fischer BO, Rinvik E, Storm-Mathisen J (1987) Putative amino acid transmitter in the amygdala. In: Excitatory Amino Acid and Epilepsy (Schwarcz and Ben-Ari, eds), pp53-66. New York: Raven Press

    Palmer MJ, Irving AJ, Seabrook GR, Jane DE, Collingridge GL (1997) The group I mGlu receptor agonist DHPG induces a novel form of LTD in the CA1 region of the hippocampus. Neuropharmacology 36:1517-1532.

    Pike FG, Goddard RS, Suckling JM, Ganter P, Kasthuri N, Paulsen O (2000) Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents. J. Physiol. (Lond) 529: 205-213.

    Pin JP, Duvoisin R (1995) Neurotransmitter receptors. I. The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34:1-26.

    Pinkstaff JK, Chappell SA, Mauro VP, Edelman GM, Krushel LA (2001) Internal initiation of translation of five dendritically localized neuronal mRNAs. Proc. Natl. Acad. Sci. U S A 98: 2770-2775.

    Ran X, Miao HH, Sheu FS, Yang D (2003) Structural and dynamic characterization of a neuron-specific protein kinase C substrate, neurogranin. Biochemistry 2003 42: 5143-50.

    Raught B, Gingras AC, Sonenberg N (2001) The target of rapamycin (TOR) proteins. Proc. Natl. Acad. Sci. U S A 98: 7037-7044.

    Rush AM, Wu J, Rowan MJ, Anwyl R (2002) Group I metabotropic glutamate receptor (mGluR)-dependent long-term depression mediated via p38 mitogen-activated protein kinase is inhibited by previous high-frequency stimulation and activation of mGluRs and protein kinase C in the rat dentate gyrus in vitro. J. Neurosci. 22:6121-6128.

    Shi SH, Hayashi Y, Petralia RS, Zaman SH, Wenthold RJ, Svoboda K, Malinow R (1999) Rapid spine delivery and redis-tribution of AMPA receptors after synaptic NMDA receptor activation. Science 284:1811–1816.

    Shi SH, Hayashi Y, Esteban JA, Malinow R (2001) Subunit-specific rules governing AMPA receptor trafficking to synapsesin hippocampal pyramidal neurons. Cell 105:331–343.

    Snyder EM, Philpot BD, Huber KM, Dong X, Fallon JR, Bear MF (2001) Internalization of ionotropic glutamate receptors in response to mGluR activation. Nat.Neurosci. :1079-1085.

    Schmierer K, Valdueza JM, Bender A, DeCamilli P, David C, Solimena M, Zschenderlein R (1998) Atypical stiff-person syndrome with spinal MRI findings, amphiphysin autoantibodies, and immunosuppression. Neurology. 51:250-252.

    Schnabel R, Kilpatrick IC, Collingridge GL (1999) An investigation into signal transduction mechanisms involved in DHPG-induced LTD in the CA1 region of the hippocampus. Neuropharmacology 38:1585-1596.

    Schoepp D, Jane DE, Monn JA (1999) Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology 38:1432-1467.

    Scoot PH, Brunn GJ, Kohn AD, Royh RA, Lawrence JC (1998) Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway Proc. Natl. Acad. Sci. USA 95:7772-7777.

    Shi SH, Hayashi Y, Petralia RS, Zaman SH, Wenthold RJ, Svoboda K, Malinow R (1999) Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284:1811-1816.

    Shobe J (2002) The role of PKA, CaMKII, and PKC in Avoidance Conditioning: Permissive or Instructive? Neurobiol. Learn. Mem. 77:291-312.

    Stanton PK, Chattarji S, Sejnowski TJ (1991) 2-Amino-3-phosphonopropionic acid, an inhibitor of glutamate-stimulated phosphoinositide turnover, blocks induction of homosynaptic long-term depression, but not potentiation, in rat hippocampus Neurosci. Lett. 127:61-66.

    Stäubli U, Chun D (1996) Factors regulating the reversibility of long-term potentiation. J. Neurosci. 16:853-860.

    Stäubli U, Chun D, Lynch G (1998) Time-dependent reversal of long-term potentiation by an integrin antagonist. J. Neurosci. 8:3460-3469.

    Steward O, Schuman EM (2001) Protein synthesis at synaptic sites on dendrites. Annu. Rev. Neurosci. 24:299-325.

    Taubenfeld SM, Wiig KA, Bear MF, Alberini CM. (1999) A molecular correlate of memory and amnesia in the hippocampus. Na. Neurosci. :309-10.

    Taubenfeld SM, Milekic MH, Monti B, Alberini CM (2001) The consolidation of new but not reactivated memory requires hippocampal C/EBP Nat. Neurosci. 4:813 – 818.

    Thomas J. Carew, Michael A. Sutton (2001) Molecular stepping stones in memory consolidation Nat. Neurosci. 4:769-711.

    Tang SJ, Reis G, Kang H, Gingras AC, Sonenberg N, Schuman EM (2002) A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc. Nat.l Acad. Sc.i USA 99:467-472.

    Takeda K, Ichijo H (2002) Neuranal p38 MAPK signaling: an emerging regulator of cell fate and fuction in the nervous system Nat. Neurosci. 7:1099-1111.

    Tibbles LA ,Woodgett JR (1999) The stress-activated protein kinase pathways. Cell. Mol. Life Sci. 55:1230–1254.

    Watabe AM, Carlisle HJ, O'Dell TJ.(2002) Postsynaptic induction and presynaptic expression of group 1 mGluR-dependent LTD in the hippocampal CA1 region. J Neurophysiol.87:1395-403.

    Walz R, Roesler R, Quevedo J, Sant'Anna MK, Madruga M, Rodrigues C, Gottfried C, Medina JH, Izquierdo I. (2000) Time-dependent impairment of inhibitory avoidance retention in rats by posttraining infusion of a mitogen-activated protein kinase kinase inhibitor into cortical and limbic structures. Neurobiol Learn. Mem. 73:11-20.

    Wang YT, Linden DJ (2000) Expression of cerebellar longterm depression requires postsynaptic clathrin-mediated endocytosis.Neuron 25:635–647.

    Watkins JC, Evans RH (1981) Excitatory amino acid transmitters. Ann. Rev. Pharmacol. Toxicol. 21:165-204.

    Watkins JC, Krogsgaard-Larsen P, and Honore I (1990) Struture-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol. Sci. 11:25-33.

    Woo NH, Nguyen PV. (2003) Protein synthesis is required for synaptic immunity to depotentiation. J. Neurosci. 23:1125-32.

    Xiao MY, Zhou Q, Nicoll RA.(2001) Metabotropic glutamate receptor activation causes a rapid redistribution of AMPA receptors. Neuropharmacology. 41:664-671.

    Yang XD, Connor JA, Faber DS (1994) Weak excitation and simultaneous inhibition induce long-term depression in hippocampal CA1 neurons J. Neurophysiol. 71:1586-1590.

    Young AB, Fagg GE (1990) Excitatory amino acid receptors in the brain: menbrane binding and receptor autoradiographic approaches. Trends Pharmacol. Sci. 11:126-133.

    Zhen X, Du W, Romano AG, Friedman E, Harvey JA (2001) The p38 mitogen-activated protein kinase is involved in associative learning in rabbits. J. Neurosci. 21: 5513–5519.

    Zho WM, You JL, Huang CC, Hsu KS (2002) The group I metabotropic glutamate receptor agonist (S)-3,5-dihydroxyphenylglycine induces a novel form of depotentiation in the CA1 region of the hippocampus. J. Neurosci. 22:8838-49.

    Zhou Q, Xiao MY, Nicoll RA (2001) Contribution of cytoskeleton to the internalization of AMPA receptors. Proc Natl Acad Sci USA 98:1261-1266.

    下載圖示 校內:2004-07-29公開
    校外:2005-07-29公開
    QR CODE