簡易檢索 / 詳目顯示

研究生: 鄧伊婷
Teng, Yi-Ting
論文名稱: 共濺鍍法製備Ga2O3/CeO2薄膜及氫氣處理對其特性之影響
Preparation of Ga2O3/CeO2 thin film by co-sputtering method and the effect of hydrogen treatment on it’s characteristics
指導教授: 陳進成
Chen, Chin-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 122
中文關鍵詞: 氣體感測器氫氣處理共濺鍍氧化鎵氧化鈰
外文關鍵詞: gas sensor, hydrogen treatment, co-sputtering, gallium oxide, cerium oxide
相關次數: 點閱:102下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以混和靶材進行共濺鍍法製備Ga2O3-CeO2薄膜氣體感測器,藉由改變共濺鍍氣氛與不同氫氮混合氣氛(10、50、100sccm氫氣/100sccm氮氣)下蝕刻反應處理10分鐘來調控Ga2O3-CeO2薄膜的氧空缺濃度,以探討共濺鍍氣氛與氫氣處理對Ga2O3-CeO2薄膜之表面型態、晶態結構、氧空缺相對濃度變化影響。並以酒精為感測氣氛,進行感測性質的研究。
    由SEM結果可知以共濺鍍法製備之Ga2O3-CeO2薄膜表面型態光滑平整,經回火處理後呈現小顆粒緻密排列;而在900℃下氫氣會與Ga2O3-CeO2薄膜產生反應,侵蝕薄膜結構。XRD分析顯示以共濺鍍法製備之Ga2O3-CeO2薄膜為非晶相排列。由光致螢光光譜分析發現以50 sccm氫氣/100 sccm氮氣之混合氣蝕刻反應處理10分鐘後,可獲得最高的氧空缺濃度,但過度的氫氣處理,反而使Ga2O3-CeO2薄膜厚度被反應消耗掉,減少氧空缺總量。根據酒精感測結果發現經過氫氣處理後,薄膜感測度提升,且可降低氣體感測器之起使操作溫度,減少感測器的能源消耗。本研究之最佳感測度出現於條件為經50sccm氫氣/100sccm氮氣之混合氣蝕刻反應處理10分鐘之薄膜中,感測度為4.49,操作溫度為575℃。

    In this study, Ga2O3-CeO2 thin film gas sensors were prepared by co-sputtering method.By adjusting the working gas composition during co-sputtering and treating under various H2 concentration of H2 and N2 gas mixture (10,50,100sccm H2/100sccm N2) for 10 minutes to control the amount of oxygen vacancies in Ga2O3-CeO2 thin film.The resulting surface morphology, crystalline structure, relative concentration of oxygen vacancies, and sensing properties in response to ethanol were investigated.
    The SEM results show that the Ga2O3-CeO2 thin film prepared by co-sputtering method has a smooth and flat morphology. After annealing,it has granular stacking morphology.Hydrogen reacts with Ga2O3-CeO2 thin film at 900℃,leading to an etching of thin film structure. The results of XRD analysis show that the Ga2O3-CeO2 thin film prepared by co-sputterung method is amorphous. Photoluminescence spectrum analysis shows that Ga2O3-CeO2 thin film has the highest concentration of oxygen vacancies after treating thin film with 50 sccm H2/100 sccm N2 for 10 minutes. However, an excessive hydrogen treatment will etch away the gallium oxide film to reduce the total amount of oxygen vacancies. The sensing experimental results show that the hydrogen treatment can increase the sensitivity and decrease the operating temperature of the gas sensor, reducing the energy consumption of gas sensor,and a highest sensitivity of 4.49 at 575℃ is obtained after thin film is treated with 50 sccm H2/100 sccm N2 for 10 minutes.

    總目錄 中文摘要 I Abstract II 誌謝 III 目錄 VI 表目錄 X 圖目錄 XI 符號說明 XV 目錄 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 7 1.3氧化鎵性質與結構 10 1.4氧化鈰性質與結構 15 第二章 理論基礎與文獻回顧 17 2.1物理氣相沈積 17 2.1.1真空理論 18 2.1.2濺鍍理論 20 2.2薄膜成長機制與模式 24 2.2.1蒸氣原子在基板的表面行為 24 2.2.2薄膜沉積的因素 25 2.2.3薄膜的成長模式 27 2.3金屬氧化物半導體氣體感測器介紹 30 2.3.1氣體感測器工作原理 30 2.3.2氣體感測器感測機制 34 2.3.3影響氣體感測器之重要參數 41 2.4摻雜理論 46 2.4.1內部摻雜 46 2.4.2表面摻雜 47 第三章 實驗步驟與研究方法 48 3.1實驗材料 49 3.2實驗流程設計 50 3.3系統設計 52 3.3.1磁控濺鍍系統 52 3.3.2氫氣處理系統 54 3.3.3氣體感測系統 55 3.4實驗步驟 56 3.4.1基板清洗 56 3.4.2濺鍍程序 56 3.4.3氫氣處理 57 3.5分析與鑑定 58 3.5.1掃描式電子顯微鏡分析(SEM) 58 3.5.2 X射線繞射儀(X-ray diffractometer, XRD) 58 3.5.3光致螢光光譜儀(Photoluminescence, PL) 58 3.5.4電性量測 59 第四章 實驗結果與討論 60 4.1不同氣體流量對薄膜型態之影響 60 4.1.1於共濺鍍法中通入氧氣製備氧化鎵薄膜摻雜氧化鈰對薄膜型態之影響 60 4.1.2於共濺鍍法中不通入氧氣製備氧化鎵薄膜摻雜氧化鈰對薄膜型態之影響 63 4.1.3氫氣處理對Ga2O3-CeO2薄膜型態之影響 65 4.2 XRD分析 70 4.3 光致螢光光譜分析 74 4.3.1以共濺鍍法製備氧化鎵薄膜摻雜氧化鈰對光致螢光光譜之影響 75 4.3.2氫氣處理對光致螢光光譜之影響 80 4.4 Ga2O3-CeO2薄膜之感測性質探討 83 4.4.1於共濺鍍法中通入氧氣製備氧化鎵薄膜摻雜氧化鈰對感測性質之影響 85 4.4.2於共濺鍍法中不通入氧氣製備氧化鎵薄膜摻雜氧化鈰對感測性質之影響 90 4.4.3氫氣處理對Ga2O3-CeO2薄膜感測性質之影響 96 4.4.4 Ga2O3-CeO2薄膜之穩定性測試 103 第五章 結論 110 未來展望 113 參考文獻 114 表目錄 表1.1 不同金屬氧化物所感測氣體種類 5 表1.2 常見的感測器類型及其原理與感測對象 6 表1.3 歷年本實驗室氧化鎵薄膜之探討變因與其結果 9 表2.1 二氧化錫氣體感測器之感測機制比較 34 表4.1以共濺鍍法製備氧化鎵薄膜摻雜氧化鈰之光致螢光光譜峰值強度表 79 表4.2 以不同濃度氫氣處理10分鐘前後之Ga2O3-CeO2薄膜光致螢光光譜峰值強度表 82 表4.3 以共濺鍍法通入氧氣製備之Ga2O3-CeO2薄膜於回火處理前後之感測性質整理 89 表4.4以共濺鍍法且不通入氧氣製備之Ga2O3-CeO2薄膜於回火處理前後之感測性質整理 95 表4.5 Ga2O3-CeO2薄膜經不同濃度氫氣處理10分鐘後於酒精感測之感測性質整理 101 表4.6 Ga2O3-CeO2薄膜回火處理前後再經50 sccm氫氣/ 100 sccm氮氣處理10分鐘後於酒精感測之感測性質整理 102 圖目錄 圖1.1 Ga2O3各種晶態之變化關係圖 12 圖1.2 氧化鎵晶體結構 13 圖1.3 氧化鎵晶體結構平面圖 13 圖1.4 氧化鎵於導帶狀態密度圖 14 圖1.5 氧化鈰晶體結構 16 圖2.1 熱電阻式真空蒸鍍系統圖 17 圖2.2 氣體流動模式示意圖 19 圖2.3 (a)Ar+離子與靶面之交互作用(b)濺射現象之示意圖 21 圖2.4 磁控濺鍍圖 23 圖2.5 蒸氣原子在基板表面上之成核及成長程序 24 圖2.6 蒸氣原子沉積基板表面之行為 26 圖2.7 成核步驟之能量示意圖 27 圖2.8 薄膜在基板上的三種成長模式 29 圖2.9 半導體表面的能帶圖 32 圖2.10 半導體的能帶圖 33 圖2.11 定壓下的吸附和溫度關係圖 38 圖2.12 氧氣吸附態所對應相對能量圖 38 圖2.13 氧氣吸附於半導體金屬氧化物圖 43 圖2.14 晶粒大小對感測器位能分佈圖 43 圖2.15 多晶金屬氧化物的頸上位能分佈圖 44 圖2.16 影響固態氣體感測器最佳化之參數圖 45 圖3.1 混合靶材圖(Ga2O3:CeO2 = 5:1) 48 圖3.2 實驗流程圖 50 圖3.3 氫氣處理實驗流程圖 51 圖3.4磁控濺鍍系統 53 圖3.5 高溫氧化系統 54 圖3.6 氣體感測系統 55 圖3.7 光致螢光光譜儀所使用不同型號之濾光片穿透度對波長圖 59 圖4.1 以共濺鍍法通入氧氣製備之Ga2O3-CeO2薄膜橫截面圖與外觀 62 圖4.2 以共濺鍍法只通入氬氣製備之Ga2O3-CeO2薄膜橫截面圖與外觀 64 圖4.3 以共濺鍍法只通入氬氣製備Ga2O3-CeO2,經不同濃度氫氣處理10分鐘後之薄膜橫截面圖 67 圖4.4 以共濺鍍法只通入氬氣製備Ga2O3-CeO2,經100 sccm氫氣/ 100 sccm氮氣處理10分鐘後之薄膜表面形態 68 圖4.5 以共濺鍍法只通入氬氣製備Ga2O3-CeO2,經不同濃度氫氣處理10分鐘後之薄膜外觀 69 圖4.6 氧化鎵之XRD圖(JCPDS#41-1103) 71 圖4.7 氧化鈰之XRD圖(JCPDS#81-0792) 71 圖4.8 以共濺鍍法通入氧氣製備之Ga2O3-CeO2薄膜XRD 圖 72 圖4.9 以共濺鍍法只通入氬氣製備之Ga2O3-CeO2薄膜XRD 圖 73 圖4.10 於共濺鍍過程通入不同流量氧氣製備Ga2O3-CeO2薄膜回火處理前後之光致螢光光譜圖,激發光源波長為265nm 77 圖4.11 於共濺鍍過程通入不同流量氧氣製備Ga2O3-CeO2薄膜之光致螢光光譜圖,激發光源波長為265nm。 78 圖4.12 於共濺鍍過程通入不同流量氧氣製備Ga2O3-CeO2薄膜經回火處理後之光致螢光光譜圖,激發光源波長為265nm。 78 圖4.13 Ga2O3-CeO2薄膜分別經10、50、100sccm氫氣/100sccm氮氣處理10分鐘前後之光致螢光光譜圖,激發光源波長為265nm。 81 圖4.14 Ga2O3-CeO2薄膜經回火處理前後再通入50 sccm氫氣/100sccm氮氣處理10分鐘之光致螢光光譜圖,激發光源波長為265nm。 81 圖4.15 以共濺鍍法通入氧氣製備之Ga2O3-CeO2薄膜於回火處理前後感測圖 87 圖4.16 以共濺鍍法通入氧氣製備之Ga2O3-CeO2薄膜操作溫度對感測度 之變化 88 圖4.17 以共濺鍍法通入氧氣製備之Ga2O3-CeO2薄膜操作溫度對響應時間之變化 88 圖4.18 以共濺鍍法只通入氬氣製備之Ga2O3-CeO2薄膜於回火處理前後感測圖 93 圖4.19 以共濺鍍法只通入氬氣製備之Ga2O3-CeO2薄膜操作溫度對感測度之變化 94 圖4.20 以共濺鍍法只通入氬氣製備之Ga2O3-CeO2薄膜操作溫度對響應時間之變化 94 圖4.21只通入氬氣製備之Ga2O3-CeO2,經不同濃度氫氣在900℃下處理10分鐘後之薄膜感測圖 99 圖4.22 以共濺鍍法只通入氬氣製備之Ga2O3-CeO2,經不同濃度氫氣在900℃下處理10分鐘後之薄膜操作溫度對感測度之變化 100 圖4.23 以共濺鍍法只通入氬氣製備之Ga2O3-CeO2,經不同濃度氫氣在900℃下處理10分鐘後之薄膜操作溫度對響應時間之變化 100 圖4.24 以共濺鍍法製備之Ga2O3-CeO2薄膜感測穩定性 105 圖4.25 以共濺鍍法製備之Ga2O3-CeO2薄膜氣體感測器使用次數對感測度之變化圖 106 圖4.26 Ga2O3-CeO2經不同濃度氫氣處理10分鐘之薄膜感測穩定性 108 圖4.27 Ga2O3-CeO2經不同濃度氫氣處理10分鐘後之氣體感測器使用次數對感測度之變化圖。 109

    參考文獻
    1.李俊遠,氣體感測器介紹,工業材料第124期第82頁,(1997)
    2.葉陶淵,化學感測器中氣體感測器的新動向,科儀新知,第20卷,第4期,第72-76頁 (1999)
    3.P. B. Weise, Effect of electronic charge transfer between adsorbate and solid on chemisorption and catlysis, Journal of Chemical Physics, Vol. 2, pp. 1531-1538 (1953)
    4.N.Taguchi. Japn.Pat.45-38200(1962)
    5.P. J. Shaver, Activated tungsten oxide gas detectors, Applied Physics Letters, Vol. 11, pp. 255-257 (1967)
    6.朱俊彥,攜帶式氣體分析儀與偵測器市場新趨勢,環保產業雙月刊,第12 期(2002)
    7.蔡嬪嬪,氣體感測器的新動向,工業材料,第150期,第98頁(1999)
    8.G. Eranna, B. C. Joshi, D. P. Runthala, R. P. Gupta, Oxide Materials for Development of Integrated Gas Sensors - A Comprehensive Review, Crit. Rev. Solid State Mater. Sci., 29:3, 111 -188
    9.A. Trinchi, W. Wlodarski1, YX. Li, G. Faglia and G. Sberveglieri, Pt/Ga2O3/SiC MRISiC devices: a study of the hydrogen response, Journal of Physics D-Applied Physics,Vol.38 , pp. 754–763 (2005)
    10.A. Trinchi, K. Galatsis, W. Wlodarski, and YX. Li, A Pt/Ga2O3-ZnO/SiC Schottky Diode-Based Hydrocarbon Gas Sensor, IEEE Sensors Journal, VOL. 3, NO. 5, (2003)
    11.YX. Li, A. Trinchi, W. Wlodarski, K. Galatsis, K. Kalantar-zadeh, Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants, Sensors and Actuators B-Chemical , Vol.93 , pp.431–434 (2003)
    12.J.F. Chang, H.H. Kuo, I.C. Leu, M.H. Hon, The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor, Sensors and Actuators B-Chemical ,Vol.84 , pp. 258–264 (2002)
    13.D. Rosenfeld, R. Sanjines, W.H. Schreiner, F. Levy, sensors and actuators, Vol. 15, pp.406 (1993).
    14.C.S. Rastomjee, R.S. Dale, R.J. Schaffer, An investigation of doping of SnO2 by ion implantation and application of ion-implanted films as gas sensors, Thin solid film, Vol. 279, pp.98-105 (1996).
    15.M.R. Mohammadi, D.J. Fray, Semiconductor TiO2–Ga2O3 thin film gas sensors derived from particulate sol–gel route, Acta Materialia , Vol.55, pp.4455–4466 (2007)
    16.陳寶清,真空表面處理工學,表面工業雜誌第31期(1992)
    17.張希誠,感測器的基礎與應用:工廠與機器人篇,第49-51頁(1986)
    18.邱碧秀,氣體感測器:半導體型氣體感測器,科儀新知,第6卷,第6期,第67-71頁(1985)
    19.E. A. Symons, Catalytic gas sensors in gas sensors: principles, operation and development, ed. G. Sberveglieri, Boston: Kluwer Academic Publishers, pp. 169 ( 1992)
    20.G. Morel, Method development and quality assurance for the analysis of hydrocarbons in environmental samples, International Journal of Environmental Analytical Chemistry, Vol. 63, pp. 269-288 (1996)
    21.U.R. Bernier and R.A. Yost, Vacuum operation of the flameioniza-tion detector for gas chromatography, Journal of Chromatographic Science, Vol. 31, pp. 358-362 (1993)
    22.M. Munidasa, A. Mandelis and A. Katz, Purely thermal wave based non-chemical photopyroelectric gas sensor: application to hydrogen, Journal De Physique, Vol. 4, pp. C7-515-518 (1994)
    23.陳秋岑,真空蒸鍍熱氧化法製備氧化鎵薄膜氣體感測器之研究,碩士論文,國立成功大學化工系 (1999)
    24.陳憶萍,真空蒸鍍熱氧化法製備奈米線氧化鎵薄膜及其氣體感測特性之研究,碩士論文,國立成功大學化工系 (2004)
    25.陳烐培,在不同氧化條件下以真空蒸鍍熱氧化法製備奈米線氧化鎵薄膜及其氣體感測特性之研究,碩士論文,國立成功大學化工系 (2005)
    26.薛永浚,不同升溫條件對真空蒸鍍熱氧化法製備氧化鎵薄膜型態及感測特性之研究,碩士論文, 國立成功大學化工系 (2006)
    27.錢雨純,真空蒸鍍熱氧化法製備摻雜鈦、鉑氧化鎵薄膜及其感測性質之研究,碩士論文,國立成功大學化工系 (2007)
    28.袁士庭,水蒸氣熱氧化製備碳/氧化鎵異質界面薄膜氣體感測器之研究,碩士論文,國立成功大學化工系 (2008)
    29.許嘉豪,碳對氧化鎵薄膜氣體感測器感測特性之影響,碩士論文,國立成功大學化工系 (2009)
    30. 陳碩宇,碳膜和鎵膜對真空蒸鍍熱氧化法製備之氧化鎵薄膜氣體感測器感測特性之影響,碩士論文,國立成功大學化工系 (2010)
    31.梁瑜軒,氫氣處理對氧化鎵薄膜氣體感測器特性之影響,碩士論文,國立成功大學化工系(2011)
    32.劉筱君,含碳之鎵鈰雙成分氧化物薄膜氣體感測器之研究,碩士論文,國立成功大學化工系(2012)
    33.N. Al-Hardan, M.J. Abdullaha and A. Abdul Aziz, The gas response enhancement from ZnO film for H2 gas detection, Applied Surface Science, Vol. 255, pp. 7794-7797(2009)
    34.V. Khranovskyy, J. Eriksson, A. Lloyd-Spetz, R. Yakimova and L. Hultman, Effect of oxygen exposure on the electrical conductivity and gas sensitivity of nanostructured ZnO films, Thin Solid Films, Vol. 517, pp. 2073-2078(2009)
    35.N. Al-Hardan , M.J. Abdullaha and A. A. Aziz, Electron transport mechanism of thermally oxidized ZnO gas sensors, Physica B, Vol. 405, pp. 4509-4512(2010)
    36.D. Wang, J. Jin, D. Xia, Q. Ye and J. Long, The effect of oxygen vacancies concentration to the gas-sensing properties of tin dioxide-doped Sm, Sensors and Actuators B, Vol. 66, pp. 260–262 (2000)
    37.J. Hao and M. Cocivera, Optical and luminescent properties of undoped and rare-earth-doped Ga2O3 thin films deposited by spray pyrolysis, Journal of Physics D: Applied Physics, Vol. 35, pp. 433-438 (2002)
    38.S. Geller, Crystal structure of β-Ga2O3, The Journal of Chemical Physics, Vol. 33, pp. 676-684 (1960)
    39.R. Roy, V. G. Hill and E. F. Osborn, Polymorphism of Ga2O3 and the system Ga2O3-H2O, Journal of the American Ceramic Society, Vol. 74, pp. 719-722(1952)
    40.H. H. Tippins, Optical absorption and photoconductivity in the band edge of β-Ga2O3 , Physical Review A, Vol. 140, pp. 316-319 (1965)
    41.T. Matsumoto, M. Aoki, A. Kinoshita and T. Aono, Absorption and reflection of vapor grown single crystal platelets of β-Ga2O3, Japanese Journal of Applied Physics, Part 1 13, pp. 1578 (1974)
    42.N. Ueda, H. Hosono, R. Waseda and H. Kawazoe, Anisotropy of electrical and optical properties in β-Ga2O3 single crystals, Applied Physics Letters, Vol. 71, pp. 933-935 (1997)
    43.L. N. Cojocaru and I. D. Alecu, Electrical properties of β-Ga2O3, Zeitschrift fur Physikalische Chemie Neue Folge, Bd. 84, pp. 325-331 (1973)
    44.M. Yamaga, E. G. Villora, K. Shimamura, N. Ichinose and M. Honda, Donor structure and electric transport mechanism in β-Ga2O3, Physical Review B, Vol. 68, pp. 155207(2003)
    45.M.Fleischer, W.Hanrieder and H.Meixner, Stability of semicon-ducting gallium oxide thin films, Thin Solid Films, Vol. 190, pp. 93-102 (1990)
    46.J. A. Kohn, G. Katz and J. D. Broder, Characterization of β-Ga2O3 and its alumina isomorph, θ-Al2O3, The American Mineralogist, Vol. 42, pp. 398-407 (1957)
    47.P. Kofstad, “Defect reactions” in Nonstoichiometry, diffusion and electrical conductivity in binary metal oxides, New York: Wiley-Interscience, pp. 15 (1972)
    48.F. A. Kroger, Detailed description of crystalline solids; imperfections , The Chemistry of Imperfect Crystals, Vol. 2, New York: North-Holland Pub. Co., American Elsevier, pp. 1(1974)
    49.J. Geurts, S. Rau, W. Richter and F. J. Schmitte, SnO films and their oxidation to SnO2: Raman scattering, IR reflectivity and X-ray diffraction studies, Thin Solid Films, Vol. 121, pp. 217-225 (1984)
    50.H. F. Mark, D. F. Othmer, C. G. Overberger and G. T. Seaborg, Encyclopedia of Chemical Technology, Vol. 5, John Wiley & Sons (1970)
    51.E. Steinbeiss, Thin film deposition techniques (PVD), Lecture Notes in Physics, Vol. 569, pp.298-315 (2001)
    52.國家科學研究院儀器科學研究中心,真空技術與應用 (2001)
    53.白木靖寬,吉田貞史編著,金原粲監修,王建義編譯,薄膜工程學,全華出版,第2-42頁 (2006)
    54.M.K. Lee and H.S. Kang, Characteristics of TiN Film Deposited on Stellite Using Reactive Magnetron Sputter Ion Plating, Journal of Material Research, Vol.12, pp.1400-2393, (2000)
    55.J.A. Venables, G.D.T. Spiller and M. Hanbucken, Nucleation and growth of thin film, Reports on Progress in Physics, Vol. 47, pp. 399-459(1984)
    56.J.A. Venables and G.L. Price, Nucleation of thin films in epitaxial growth , ed. J. W. Matthews, New York :Academic Press, pp. 381(1975)
    57.V.E. Bauer, Phanomenologische theorie der kristallabscheidung an oberflachen, I. Zeitschrift fur Kristallographie, Bd., Vol. 110, pp. 372-394(1958)
    58.林鴻明、曾世杰,奈米半導體材料之特殊氣體感測性質,工業材料,第157期,第163-169頁(2000)
    59.Z. Zeleny, Proc.Camb.Phil.Soc., Vol. 18, pp. 71(1915)
    60.S.R. Morrision, Chemical sensors in semiconductor sensors , ed.S.M.Sze,New York:John Wiley and Sons, Inc., pp.383(1994)
    61.A. Gurlo and R. Riedel, In situ and operando spectroscopy for assessing mechanisms of gas sensing, Angew Chem Int Ed Engl., Vol. 46, pp. 3826-3848 (2007)
    62.D. Kohl, Surface processes in the detection of reducing gases with SnO2-based devices, Sensors and Actuators, Vol. 18, pp.71-113 (1989)
    63.H. Windischmann and P. Mark, A model for the operation of a thin film SnOx conductance-modulation carbon monoxide sensor, Journal of the electrochemical society, Vol. 126, pp. 627-633 (1979)
    64.N. Yamazoe, J. Fuchigami, M. Kishikawa and T.Seiyama, Interactions of tin oxide surface with O2, H2O and H2, Surface Science, Vol. 86, pp. 335-344 (1979)
    65.Y. Shimizu and M. Egashira, Basic aspects and challenges of semiconductor gas sensors, MRS Bulletin, Vol. 24, pp. 18-24(1998)
    66.H. Ogawan, M. Nishikawa and A. Abe, Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films, Journal of Applied Physics,Vol. 53, pp. 4448(1982)
    67.G. Korotcenkov, The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors, Materials Science and Engineering R, Vol. 61, pp. 1-39(2008)
    68.G. Korotcenkov, Metal oxides for solid-state gas sensors: what determines our choice?, Materials Science and Engineering: B, Vol. 139, pp. 1-23(2007)
    69.G. Heiland, Homogeneous semiconducting gas sensors, Sens. Actuators Vol.2 pp. 343~361 (1982)
    70.C. H. Shim, et al ,Gas sensing characters of SnO2 thin film fabricated by thermal oxidation of a Sn/Pt double layer , Sens. Actuators B81 , pp176-181(2002)
    71.G. Sberveglieri, S. Groppelli,P.Nelli, A. Camanzi ,Bismuth-doped tin oxide thin-film gas sensors, Sens. Actuators B Vol.3 pp183~189 (1991).
    72.K. .H. Cha,H. C. Park, K. H. Kim, Effect of palladium doping and film thickness on the H2-gas sensing characteristics of SnO2, Sens. Actuators B Vol.21 pp.91-96 (1994).
    73.D.A.Neamen, Semiconductor physics and devices, The McGraw-Hill Companies Inc. pp104 (1999).
    74.G. C. Bond,M.J.Fuller and L.Molloy, Oxidation of carbon monoxide- catalysed by palladium on tin oxide:an example of spillover catalysis, proc.6th Intern.Congr.Catalysis,London U.K. pp356~364 (1988).
    75.N. Yamazoe, Y. Kurokawa and T. Seiyama, Effects of additives on semiconductor gas sensors , Sens. Actuators B Vol.4 pp283~289 (1983)
    76.L. Binet and D. Gourier, Origin of the blue luminescence of β-Ga2O3, Journal of Physics and Chemistry of Solids, Vol. 59, pp. 1241-1249 (1998)
    77.F. Gao, GH. Li, JH. Zhang, FG. Qin, ZY. Yao, and ZK. Liu, Growth and photoluminescence of epitaxial CeO2 film on Si (111) substrate, Chinese Physics Letters, Vol. 18, pp. 443-444(2001)
    78.M. Ogita, N. Saika, Y. Nakanishi, Y. Hatanaka, Ga2O3 thin films for high-temperature gas sensors, Applied Surface Science, Vol. 142, pp. 188-191(1999)

    下載圖示 校內:2016-07-26公開
    校外:2018-07-26公開
    QR CODE