| 研究生: |
鄧伊婷 Teng, Yi-Ting |
|---|---|
| 論文名稱: |
共濺鍍法製備Ga2O3/CeO2薄膜及氫氣處理對其特性之影響 Preparation of Ga2O3/CeO2 thin film by co-sputtering method and the effect of hydrogen treatment on it’s characteristics |
| 指導教授: |
陳進成
Chen, Chin-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 氣體感測器 、氫氣處理 、共濺鍍 、氧化鎵 、氧化鈰 |
| 外文關鍵詞: | gas sensor, hydrogen treatment, co-sputtering, gallium oxide, cerium oxide |
| 相關次數: | 點閱:102 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以混和靶材進行共濺鍍法製備Ga2O3-CeO2薄膜氣體感測器,藉由改變共濺鍍氣氛與不同氫氮混合氣氛(10、50、100sccm氫氣/100sccm氮氣)下蝕刻反應處理10分鐘來調控Ga2O3-CeO2薄膜的氧空缺濃度,以探討共濺鍍氣氛與氫氣處理對Ga2O3-CeO2薄膜之表面型態、晶態結構、氧空缺相對濃度變化影響。並以酒精為感測氣氛,進行感測性質的研究。
由SEM結果可知以共濺鍍法製備之Ga2O3-CeO2薄膜表面型態光滑平整,經回火處理後呈現小顆粒緻密排列;而在900℃下氫氣會與Ga2O3-CeO2薄膜產生反應,侵蝕薄膜結構。XRD分析顯示以共濺鍍法製備之Ga2O3-CeO2薄膜為非晶相排列。由光致螢光光譜分析發現以50 sccm氫氣/100 sccm氮氣之混合氣蝕刻反應處理10分鐘後,可獲得最高的氧空缺濃度,但過度的氫氣處理,反而使Ga2O3-CeO2薄膜厚度被反應消耗掉,減少氧空缺總量。根據酒精感測結果發現經過氫氣處理後,薄膜感測度提升,且可降低氣體感測器之起使操作溫度,減少感測器的能源消耗。本研究之最佳感測度出現於條件為經50sccm氫氣/100sccm氮氣之混合氣蝕刻反應處理10分鐘之薄膜中,感測度為4.49,操作溫度為575℃。
In this study, Ga2O3-CeO2 thin film gas sensors were prepared by co-sputtering method.By adjusting the working gas composition during co-sputtering and treating under various H2 concentration of H2 and N2 gas mixture (10,50,100sccm H2/100sccm N2) for 10 minutes to control the amount of oxygen vacancies in Ga2O3-CeO2 thin film.The resulting surface morphology, crystalline structure, relative concentration of oxygen vacancies, and sensing properties in response to ethanol were investigated.
The SEM results show that the Ga2O3-CeO2 thin film prepared by co-sputtering method has a smooth and flat morphology. After annealing,it has granular stacking morphology.Hydrogen reacts with Ga2O3-CeO2 thin film at 900℃,leading to an etching of thin film structure. The results of XRD analysis show that the Ga2O3-CeO2 thin film prepared by co-sputterung method is amorphous. Photoluminescence spectrum analysis shows that Ga2O3-CeO2 thin film has the highest concentration of oxygen vacancies after treating thin film with 50 sccm H2/100 sccm N2 for 10 minutes. However, an excessive hydrogen treatment will etch away the gallium oxide film to reduce the total amount of oxygen vacancies. The sensing experimental results show that the hydrogen treatment can increase the sensitivity and decrease the operating temperature of the gas sensor, reducing the energy consumption of gas sensor,and a highest sensitivity of 4.49 at 575℃ is obtained after thin film is treated with 50 sccm H2/100 sccm N2 for 10 minutes.
參考文獻
1.李俊遠,氣體感測器介紹,工業材料第124期第82頁,(1997)
2.葉陶淵,化學感測器中氣體感測器的新動向,科儀新知,第20卷,第4期,第72-76頁 (1999)
3.P. B. Weise, Effect of electronic charge transfer between adsorbate and solid on chemisorption and catlysis, Journal of Chemical Physics, Vol. 2, pp. 1531-1538 (1953)
4.N.Taguchi. Japn.Pat.45-38200(1962)
5.P. J. Shaver, Activated tungsten oxide gas detectors, Applied Physics Letters, Vol. 11, pp. 255-257 (1967)
6.朱俊彥,攜帶式氣體分析儀與偵測器市場新趨勢,環保產業雙月刊,第12 期(2002)
7.蔡嬪嬪,氣體感測器的新動向,工業材料,第150期,第98頁(1999)
8.G. Eranna, B. C. Joshi, D. P. Runthala, R. P. Gupta, Oxide Materials for Development of Integrated Gas Sensors - A Comprehensive Review, Crit. Rev. Solid State Mater. Sci., 29:3, 111 -188
9.A. Trinchi, W. Wlodarski1, YX. Li, G. Faglia and G. Sberveglieri, Pt/Ga2O3/SiC MRISiC devices: a study of the hydrogen response, Journal of Physics D-Applied Physics,Vol.38 , pp. 754–763 (2005)
10.A. Trinchi, K. Galatsis, W. Wlodarski, and YX. Li, A Pt/Ga2O3-ZnO/SiC Schottky Diode-Based Hydrocarbon Gas Sensor, IEEE Sensors Journal, VOL. 3, NO. 5, (2003)
11.YX. Li, A. Trinchi, W. Wlodarski, K. Galatsis, K. Kalantar-zadeh, Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants, Sensors and Actuators B-Chemical , Vol.93 , pp.431–434 (2003)
12.J.F. Chang, H.H. Kuo, I.C. Leu, M.H. Hon, The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor, Sensors and Actuators B-Chemical ,Vol.84 , pp. 258–264 (2002)
13.D. Rosenfeld, R. Sanjines, W.H. Schreiner, F. Levy, sensors and actuators, Vol. 15, pp.406 (1993).
14.C.S. Rastomjee, R.S. Dale, R.J. Schaffer, An investigation of doping of SnO2 by ion implantation and application of ion-implanted films as gas sensors, Thin solid film, Vol. 279, pp.98-105 (1996).
15.M.R. Mohammadi, D.J. Fray, Semiconductor TiO2–Ga2O3 thin film gas sensors derived from particulate sol–gel route, Acta Materialia , Vol.55, pp.4455–4466 (2007)
16.陳寶清,真空表面處理工學,表面工業雜誌第31期(1992)
17.張希誠,感測器的基礎與應用:工廠與機器人篇,第49-51頁(1986)
18.邱碧秀,氣體感測器:半導體型氣體感測器,科儀新知,第6卷,第6期,第67-71頁(1985)
19.E. A. Symons, Catalytic gas sensors in gas sensors: principles, operation and development, ed. G. Sberveglieri, Boston: Kluwer Academic Publishers, pp. 169 ( 1992)
20.G. Morel, Method development and quality assurance for the analysis of hydrocarbons in environmental samples, International Journal of Environmental Analytical Chemistry, Vol. 63, pp. 269-288 (1996)
21.U.R. Bernier and R.A. Yost, Vacuum operation of the flameioniza-tion detector for gas chromatography, Journal of Chromatographic Science, Vol. 31, pp. 358-362 (1993)
22.M. Munidasa, A. Mandelis and A. Katz, Purely thermal wave based non-chemical photopyroelectric gas sensor: application to hydrogen, Journal De Physique, Vol. 4, pp. C7-515-518 (1994)
23.陳秋岑,真空蒸鍍熱氧化法製備氧化鎵薄膜氣體感測器之研究,碩士論文,國立成功大學化工系 (1999)
24.陳憶萍,真空蒸鍍熱氧化法製備奈米線氧化鎵薄膜及其氣體感測特性之研究,碩士論文,國立成功大學化工系 (2004)
25.陳烐培,在不同氧化條件下以真空蒸鍍熱氧化法製備奈米線氧化鎵薄膜及其氣體感測特性之研究,碩士論文,國立成功大學化工系 (2005)
26.薛永浚,不同升溫條件對真空蒸鍍熱氧化法製備氧化鎵薄膜型態及感測特性之研究,碩士論文, 國立成功大學化工系 (2006)
27.錢雨純,真空蒸鍍熱氧化法製備摻雜鈦、鉑氧化鎵薄膜及其感測性質之研究,碩士論文,國立成功大學化工系 (2007)
28.袁士庭,水蒸氣熱氧化製備碳/氧化鎵異質界面薄膜氣體感測器之研究,碩士論文,國立成功大學化工系 (2008)
29.許嘉豪,碳對氧化鎵薄膜氣體感測器感測特性之影響,碩士論文,國立成功大學化工系 (2009)
30. 陳碩宇,碳膜和鎵膜對真空蒸鍍熱氧化法製備之氧化鎵薄膜氣體感測器感測特性之影響,碩士論文,國立成功大學化工系 (2010)
31.梁瑜軒,氫氣處理對氧化鎵薄膜氣體感測器特性之影響,碩士論文,國立成功大學化工系(2011)
32.劉筱君,含碳之鎵鈰雙成分氧化物薄膜氣體感測器之研究,碩士論文,國立成功大學化工系(2012)
33.N. Al-Hardan, M.J. Abdullaha and A. Abdul Aziz, The gas response enhancement from ZnO film for H2 gas detection, Applied Surface Science, Vol. 255, pp. 7794-7797(2009)
34.V. Khranovskyy, J. Eriksson, A. Lloyd-Spetz, R. Yakimova and L. Hultman, Effect of oxygen exposure on the electrical conductivity and gas sensitivity of nanostructured ZnO films, Thin Solid Films, Vol. 517, pp. 2073-2078(2009)
35.N. Al-Hardan , M.J. Abdullaha and A. A. Aziz, Electron transport mechanism of thermally oxidized ZnO gas sensors, Physica B, Vol. 405, pp. 4509-4512(2010)
36.D. Wang, J. Jin, D. Xia, Q. Ye and J. Long, The effect of oxygen vacancies concentration to the gas-sensing properties of tin dioxide-doped Sm, Sensors and Actuators B, Vol. 66, pp. 260–262 (2000)
37.J. Hao and M. Cocivera, Optical and luminescent properties of undoped and rare-earth-doped Ga2O3 thin films deposited by spray pyrolysis, Journal of Physics D: Applied Physics, Vol. 35, pp. 433-438 (2002)
38.S. Geller, Crystal structure of β-Ga2O3, The Journal of Chemical Physics, Vol. 33, pp. 676-684 (1960)
39.R. Roy, V. G. Hill and E. F. Osborn, Polymorphism of Ga2O3 and the system Ga2O3-H2O, Journal of the American Ceramic Society, Vol. 74, pp. 719-722(1952)
40.H. H. Tippins, Optical absorption and photoconductivity in the band edge of β-Ga2O3 , Physical Review A, Vol. 140, pp. 316-319 (1965)
41.T. Matsumoto, M. Aoki, A. Kinoshita and T. Aono, Absorption and reflection of vapor grown single crystal platelets of β-Ga2O3, Japanese Journal of Applied Physics, Part 1 13, pp. 1578 (1974)
42.N. Ueda, H. Hosono, R. Waseda and H. Kawazoe, Anisotropy of electrical and optical properties in β-Ga2O3 single crystals, Applied Physics Letters, Vol. 71, pp. 933-935 (1997)
43.L. N. Cojocaru and I. D. Alecu, Electrical properties of β-Ga2O3, Zeitschrift fur Physikalische Chemie Neue Folge, Bd. 84, pp. 325-331 (1973)
44.M. Yamaga, E. G. Villora, K. Shimamura, N. Ichinose and M. Honda, Donor structure and electric transport mechanism in β-Ga2O3, Physical Review B, Vol. 68, pp. 155207(2003)
45.M.Fleischer, W.Hanrieder and H.Meixner, Stability of semicon-ducting gallium oxide thin films, Thin Solid Films, Vol. 190, pp. 93-102 (1990)
46.J. A. Kohn, G. Katz and J. D. Broder, Characterization of β-Ga2O3 and its alumina isomorph, θ-Al2O3, The American Mineralogist, Vol. 42, pp. 398-407 (1957)
47.P. Kofstad, “Defect reactions” in Nonstoichiometry, diffusion and electrical conductivity in binary metal oxides, New York: Wiley-Interscience, pp. 15 (1972)
48.F. A. Kroger, Detailed description of crystalline solids; imperfections , The Chemistry of Imperfect Crystals, Vol. 2, New York: North-Holland Pub. Co., American Elsevier, pp. 1(1974)
49.J. Geurts, S. Rau, W. Richter and F. J. Schmitte, SnO films and their oxidation to SnO2: Raman scattering, IR reflectivity and X-ray diffraction studies, Thin Solid Films, Vol. 121, pp. 217-225 (1984)
50.H. F. Mark, D. F. Othmer, C. G. Overberger and G. T. Seaborg, Encyclopedia of Chemical Technology, Vol. 5, John Wiley & Sons (1970)
51.E. Steinbeiss, Thin film deposition techniques (PVD), Lecture Notes in Physics, Vol. 569, pp.298-315 (2001)
52.國家科學研究院儀器科學研究中心,真空技術與應用 (2001)
53.白木靖寬,吉田貞史編著,金原粲監修,王建義編譯,薄膜工程學,全華出版,第2-42頁 (2006)
54.M.K. Lee and H.S. Kang, Characteristics of TiN Film Deposited on Stellite Using Reactive Magnetron Sputter Ion Plating, Journal of Material Research, Vol.12, pp.1400-2393, (2000)
55.J.A. Venables, G.D.T. Spiller and M. Hanbucken, Nucleation and growth of thin film, Reports on Progress in Physics, Vol. 47, pp. 399-459(1984)
56.J.A. Venables and G.L. Price, Nucleation of thin films in epitaxial growth , ed. J. W. Matthews, New York :Academic Press, pp. 381(1975)
57.V.E. Bauer, Phanomenologische theorie der kristallabscheidung an oberflachen, I. Zeitschrift fur Kristallographie, Bd., Vol. 110, pp. 372-394(1958)
58.林鴻明、曾世杰,奈米半導體材料之特殊氣體感測性質,工業材料,第157期,第163-169頁(2000)
59.Z. Zeleny, Proc.Camb.Phil.Soc., Vol. 18, pp. 71(1915)
60.S.R. Morrision, Chemical sensors in semiconductor sensors , ed.S.M.Sze,New York:John Wiley and Sons, Inc., pp.383(1994)
61.A. Gurlo and R. Riedel, In situ and operando spectroscopy for assessing mechanisms of gas sensing, Angew Chem Int Ed Engl., Vol. 46, pp. 3826-3848 (2007)
62.D. Kohl, Surface processes in the detection of reducing gases with SnO2-based devices, Sensors and Actuators, Vol. 18, pp.71-113 (1989)
63.H. Windischmann and P. Mark, A model for the operation of a thin film SnOx conductance-modulation carbon monoxide sensor, Journal of the electrochemical society, Vol. 126, pp. 627-633 (1979)
64.N. Yamazoe, J. Fuchigami, M. Kishikawa and T.Seiyama, Interactions of tin oxide surface with O2, H2O and H2, Surface Science, Vol. 86, pp. 335-344 (1979)
65.Y. Shimizu and M. Egashira, Basic aspects and challenges of semiconductor gas sensors, MRS Bulletin, Vol. 24, pp. 18-24(1998)
66.H. Ogawan, M. Nishikawa and A. Abe, Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films, Journal of Applied Physics,Vol. 53, pp. 4448(1982)
67.G. Korotcenkov, The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors, Materials Science and Engineering R, Vol. 61, pp. 1-39(2008)
68.G. Korotcenkov, Metal oxides for solid-state gas sensors: what determines our choice?, Materials Science and Engineering: B, Vol. 139, pp. 1-23(2007)
69.G. Heiland, Homogeneous semiconducting gas sensors, Sens. Actuators Vol.2 pp. 343~361 (1982)
70.C. H. Shim, et al ,Gas sensing characters of SnO2 thin film fabricated by thermal oxidation of a Sn/Pt double layer , Sens. Actuators B81 , pp176-181(2002)
71.G. Sberveglieri, S. Groppelli,P.Nelli, A. Camanzi ,Bismuth-doped tin oxide thin-film gas sensors, Sens. Actuators B Vol.3 pp183~189 (1991).
72.K. .H. Cha,H. C. Park, K. H. Kim, Effect of palladium doping and film thickness on the H2-gas sensing characteristics of SnO2, Sens. Actuators B Vol.21 pp.91-96 (1994).
73.D.A.Neamen, Semiconductor physics and devices, The McGraw-Hill Companies Inc. pp104 (1999).
74.G. C. Bond,M.J.Fuller and L.Molloy, Oxidation of carbon monoxide- catalysed by palladium on tin oxide:an example of spillover catalysis, proc.6th Intern.Congr.Catalysis,London U.K. pp356~364 (1988).
75.N. Yamazoe, Y. Kurokawa and T. Seiyama, Effects of additives on semiconductor gas sensors , Sens. Actuators B Vol.4 pp283~289 (1983)
76.L. Binet and D. Gourier, Origin of the blue luminescence of β-Ga2O3, Journal of Physics and Chemistry of Solids, Vol. 59, pp. 1241-1249 (1998)
77.F. Gao, GH. Li, JH. Zhang, FG. Qin, ZY. Yao, and ZK. Liu, Growth and photoluminescence of epitaxial CeO2 film on Si (111) substrate, Chinese Physics Letters, Vol. 18, pp. 443-444(2001)
78.M. Ogita, N. Saika, Y. Nakanishi, Y. Hatanaka, Ga2O3 thin films for high-temperature gas sensors, Applied Surface Science, Vol. 142, pp. 188-191(1999)