簡易檢索 / 詳目顯示

研究生: 王健驊
Wang, Jian-Hua
論文名稱: 利用數學規劃模式提升多溶質水網路操作彈性的翻修策略
A Programing Based Revamp Strategy for Improving Operational Flexibility of Multi-Contaminant Water Networks
指導教授: 張珏庭
Chang, Chuei-Tin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 97
中文關鍵詞: 水網路多溶質彈性指標MINLP遺傳演算法
外文關鍵詞: Water Network, Multiple contaminants, flexibility index, MINLP, Genetic algorithm
相關次數: 點閱:113下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去有關化工廠水網路操作的研究中,如何提升給定程序彈性指標往往是討論的議題,一般而言,常用的翻修方法為(一)增加新鮮水供應上限;(二)加入或刪除連接管線;(三)加入新的處理單元。另外,值得注意的是以往在這方面的研究,大多是考慮單一溶質之情況,且採用經驗性人工法則來進行翻修。本研究則延伸考慮多溶質水網路,使用輔助管線超結構之數學規劃模式與遺傳演算法,來決定在既有的水網路中新加入管線的連接;最後,我們利用一系列案例來驗證此一方法的可行性。

    In the past the study of water network operation in the chemical plant, it is a important issues how to improve the flexibility index of existing water networks. The general revamp options, i.e., (1) relaxation of the upper limit of freshwater supply rate, (2) inserting/deleting pipeline connections and (3) adding treatment units. Most of research study only one contaminant and use the heuristical revamp strategy to improve operational flexibility in the past. In this thesis, we use a new mathematical programing and genetic algorithm to determine inserting pipeline connections in the multi-contaminant water networks. Several case studies are presented in this thesis to demonstrate the effectiveness of the method.

    中文摘要....................I Abstract..................II 誌謝......................III 表目錄....................VII 圖目錄.....................IX 符號.......................XI 第一章 緒論................1 1.1 研究背景.............1 1.2 文獻回顧.............1 1.3 研究目的.............3 1.4 組織與架構...........3 第二章 水網路設計模式........4 2.1 集合....................4 2.2 超結構...................5 2.2.1 基本超結構.............5 2.2.2 輔助管線超結構..........6 2.3 數學規劃模式.............9 2.3.1 新管線相關限制式........9 2.3.2 水源相關限制式.........10 2.3.3 排放口相關限制式.......11 2.3.4 用水單元相關限制式.....11 2.3.5 處理單元相關限制式.....13 2.3.6 混合器相關限制式.......14 第三章 彈性分析............16 3.1 數學表示式..............16 3.2 可行性測試..............17 3.3 彈性指標................19 3.4 不確定參數引入...........23 3.5水網路不確定參數範圍限制...24 3.6 測試例題................26 3.6.1 彈性指標..............27 3.6.2 加入管線的步驟.........29 3.6.3 加入混合器的步驟.......31 第四章 遺傳演算法..........34 4.1 原理...................34 4.1.1 編碼.................35 4.1.2 初始族群的選定........35 4.1.3 適應度計算............35 4.1.4 擇優.................36 4.1.5 交配.................36 4.1.6 突變.................38 4.1.7 演化程序..............39 4.1.8 終止條件..............40 4.2 運行方法與MATLAB工具箱...40 4.3 遺傳演算法測試例題.......44 第五章 研究案例............50 5.1 案例1..................50 5.2 案例2..................57 5.3 案例3..................62 5.4 案例4..................67 5.5 案例5..................72 第六章 結論與展望..........78 6.1 結論...................78 6.2 展望...................78 參考文獻...... .............79 附錄A......................82 附錄B......................88 附錄C......................92

    Alva-Argaez, A., A. C. Kolossis, and R. Smith, “Wastewater Minimization of Industrial Systems Using an Integrated Approach,” Comput. Chem. Eng., 22, 741 (1998).
    Chang, C. T., and B. H. Li, “Improved Optimization Strategies for Generating Practical Water-Usage and –Treatment Network Structures,” Ind. Eng. Chem. Res., 44, 3607 (2005).
    E. Riyanto, A Heuristical Revamp Strategy to Improve Operational Flexibility of Existing Water Networks, M.S. Thesis, Chemical Engineering, Cheng Kung University (2009).
    Feng, X., and W. D. Seider, “New Structure and Design Methodology for Water Networks,” Ind. Eng. Chem. Res., 40, 6140 (2001).
    Grossmann, I. E. and C. A. Floudas, “Active Constraint Strategy for Flexibility Analysis in Chemical Processes,” Comput. Chem. Eng., 11, 675 (1987).
    Huang, C. H., C. T. Chang, H. C. Ling, and C. C. Chang, “A Mathematical Programming Model for Water Usage and Treatment Network Design,” Ind. Eng. Chem. Res., 38, 2666 (1999).
    Karuppiah, R., and I. E. Grossmann, “Global Optimization for the Synthesis of Integrated Water Systems in Chemical Process,” Comput. Chem. Eng., 30, 650 (2006).
    Kuo, W. C. J., and Smith, “Effluent Treatment System Design,” Chem. Eng. Sci., 52, 4273 (1997).
    Li, B. H., C. T. Chang, and C. W. Liou, “Development of a Generalized Mixed Integer Nonlinear Programming Model for Assessing and Improving the Operational Flexibility of Water Network Designs,” Ind. Eng. Chem. Res., 48, 3496 (2009).
    Liou, C. W., The Impacts of Mixers & Buffer Tanks on the Operational Flexibility of Water Usage and Treatment Networks, M.S. Thesis, Chemical Engineering, Cheng Kung University (2007).
    Ostrovsky, G. M., L. E. K. Achenie, Y. P. Wang, and Y. M. Volin, “A New Algorithm for Computing Process Flexibility,” Ind. Eng. Chem. Res., 39, 2368 (2000).
    Ostrovsky, G. M., Y. M. Volin, and M. M. Senyavin, “An Approach to Solving a Two-Stage Optimization Problem Under Uncertainty,” Comput. Chem. Eng., 21, 317 (1997).
    Ostrovsky, G. M., Y. M. Volin, E. I. Barit, and M. M. Senyavin, “Flexibility Analysis and Optimization of Chemical Plants with Uncertain Parameters,” Comput. Chem. Eng., 18, 755 (1994).
    Swaney, R. E. and I. E. Grossmann, “An Index for Operational Flexibility in Chemical Process Design. Part I: Formulation and Theory,” AIChE J., 31, 621 (1985).
    Swaney, R. E. and I. E. Grossmann, “An Index for Operational Flexibility in Chemical Process Design. Part II: Computational Algorithms,” AIChE J., 31, 631 (1985).
    Takama, N., T. Kuriyama, K. Shiroko, and T. Umeda, “Optimal Water Allocation in a Petroleum Refinery,” Comput. Chem. Eng., 4, 251 (1980).
    Tsai, M. J., and C. T. Chang, “Water Usage and Treatment Network Design Using Genetic Algorithms,” Ind. Eng. Chem. Res., 40, 4874 (2001).
    Wang, B., X. Feng, and Z. Zhang, “A Design Methodology for Multiple-Contaminant Water Networks with Single Internal Water Main,” Comput. Chem. Eng., 27, 903 (2003).
    Wang, Y. P., and R. Smith, “Wastewater Minimization,” Chem. Eng. Sci., 49, 981 (1994).
    周鵬程, 遺傳演算法原理與應用-活用Matlab(修訂二版), 全華科技圖書股份有限公司, 台北市(2005).

    下載圖示 校內:2013-08-15公開
    校外:2013-08-15公開
    QR CODE