簡易檢索 / 詳目顯示

研究生: 許雅雯
Hsu, Ya-Wen
論文名稱: 應用類神經網路於結構損傷即時診斷
Application of Artificial Neural Networks for Structural Damage Detection
指導教授: 姚昭智
Yao, George
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 128
中文關鍵詞: 類神經網路層間位移模態結構損傷檢測
外文關鍵詞: Structural damage detection, Inter-story Drift Mode Shape, IDMS, Neural networks
相關次數: 點閱:140下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究主要藉由找出結構地震時明顯的振動改變信號,建立一套有效的結構損傷檢測辦法,以便在大地震後能夠迅速的完成結構損傷檢查,一方面確保震後傑購物之安全,另一方面則能減少安全檢查所花費之時間,使建物能儘快恢復正常使用,減低損失。
      文中首先以SAP2000建立電腦模型進行非線性歷時分析,觀察層間位移模態(IDMS)在未破壞前與破壞後之改變。並以計算IDMS靈敏度,比較各種不同之破壞類型,驗證了以IDMS做為破壞指標的可行性。研究發現只要樓層剛度變化在30%以上,便可藉由IDMS之改變得知。接著利用氣象局裝設於建築物上之強震量測系統實際量測資料,進行基線值之計算分析,結果S與SRC建物計算所得之基線值穩定度較高,而RC建物則較差。最後再以IDMS模式實際分析一大陸七層鋼筋混凝土模型震動台試驗數據,得到良好之破壞檢測效果,證明IDMS應用於實際結構之適用性。
      本研究第二部分則嘗試應用類神經網路作為損傷檢測之判別工具,利用類神經網路在處理複雜資料及運算速度上的優勢,來判別結構物之損傷樓層及程度。文中以IDMS為網路之輸入層,使用倒傳遞類神經網路來進行訓練與測試,訓練結果證明以類神經網路作為判別工具之效果良好。而後再以高雄某大樓之電腦模型作為實例驗證,並建立一套完整的結構損傷即時診斷流程。

      This research intends to identify a structural damage index and to establish a damage diagnosis system to detect building damage after a major earthquake so that the remedial process can be proceeded immediately in the post-earthquake recovery.
      In the first part, SAP2000 is used to perform nonlinear time history analysis of plane frame and the space frame structures. Inter-story Drift Mode Shape (IDMS) is chosen as the key index in detecting damage conditions. The variation of IDMS before and during earthquakes is then compared to indicate the existence of the structural damage. Thereafter, the sensitivity of the IDMS variation to different degree of structural damage is also compared. It is concluded that IDMS is adequate to identify structural damage condition in which the floor stiffness is reduced above 30%. Additionally, the dynamic characteristics records of the existing building arrays instruments installed by the Central Weather Bureau in Taiwan are utilized to calculate the baselines of different buildings. It is found that baselines of S and SRC buildings are more accurate than that of RC buildings. In conclusion, the results obtained by using IDMS to analyze a shaking table test study of RC frame model show that the application of IDMS for damage detection is satisfactory.
      Secondly, according to the superiority in coping with complex data and operation speed, we try to apply the artificial neural networks (ANNs) to identify the structural damage. IDMS is used as the input data in this case to train and test a back-propagation neural network. The training reveal that ANNs is effective to be a damage assessment technique for the diagnosis of structures. Using the computer model of an existing structure located in Kaohsiung has been proved that the network can discover the damage successfully. Meanwhile, establishing an integrated process to diagnose damage immediately by using IDMS and ANNs.

    第一章 序論 1-1 研究動機 1-1 1-2 研究目的 1-1 1-3 研究內容概要 1-3 第二章 文獻回顧與研究理論 2-1 系統識別 2-1 2-2 應用類神經網路於結構損傷檢測 2-2 2-3 研究理論 2-4 2-4 研究方法 2-6 第三章 層間位移模態之分析與結果 3-1 層間位移模態(IDMS) 3-1 3-1-1 IDMS 與基線值 3-1 3-1-2 SAP2000 模型 3-4 3-1-3 非線性模擬 3-10 3-2 分析步驟 3-12 3-2-1 分析流程 3-12 3-3 分析結果 3-14 3-3-1 平面構架分析結果 3-14 3-3-2 立體構架分析結果 3-27 3-3-3 梁破壞之分析結果 3-39 3-3-4 NLLink 長度改變之分析結果 3-41 3-3-5 觀察位移振型(Displacement mode shape) 3-45 3-4 結構強震資料分析 3-47 3-4-1 氣象局強震資料 3-47 3-4-2 計算結果與分析 3-48 3-4-3 大陸鋼筋混凝土模型震動台試驗 3-55 第四章 應用類神經網路 4-1 類神經網路簡介 4-1 4-1-1 類神經網路的發展與應用 4-1 4-1-2 類神經網路的基本架構 4-2 4-1-3 應用類神經網路於結構損傷診斷之流程 4-6 4-2 破壞診斷之訓練及測試 4-8 4-2-1 網路訓練程序 4-8 4-2-2 訓練及測試網路 4-13 4-2-3 結果分析 4-16 4-3 實例測試 4-18 4-3-1 模型資料 4-18 4-3-2 網路訓練與測試 4-19 4-3-3 模擬結果分析 4-22 4-4 結構損傷即時診斷流程 4-24 第五章 結論與建議 5-1 層間位移模態(IDMS) 5-1 5-2 應用類神經網路 5-2 5-3 結論 5-4 5-4 後續研究與建議 5-5

    參考文獻
    1.中央氣象局網站資料
    2.M. Celebi, A. Sanli, M. Sinclair, S. Gallant & D.Radulescu, 2004, “Real-Time Seismic Monitiring Needs of a Building Owner – and the Solution: A Cooperative Effort.”, <Earthquake Spectra>, Vol. 20 no.2, pp.333~346
    3.Adams R.D., Cawley P., Pye C.J. & Stone B.J., 1978, “Vibration techniques for non-destructively assessing the integrity of structures”, <Journal of Mechanical Engineering Science>, Vol. 20 no.2, pp.93~100
    4.Yao G.C., Chang K.C. & Lee G.C., 1992, “Damage diagnosis of steel frames using vibration signature analysis”, J. Engng. Mech. ASCE, Vol. 118, pp.1949~1961
    5.王振興,2003,<電機學院王振興老師上課講義>,成功大學,台南
    6.Kudva J.N., Munir N. and Tan P.W., 1992, “Damage in Smart Structure Using Neural Networks and Finite Element Analysis”, <Smart Materials and Structures>, pp.108~112
    7.Wu X., Ghaboussi J. and Garrnett J.H., 1992, “Use of Neural Network in Detection of Structural Damage”, <Computer & Structures>, Vol. 42 no.4, pp.649~659
    8.Worden K., Ball A.D. and Tomlinson G.R., 1993, “Fault Location in Framework Structure Using Neural Network”, <Smart Materials and Structures>, Vol. 2, pp.189~200
    9.R.Ceravolo and A. De Stefano, Politecnico di Torino, 1995, “Damage Location in Structures through a connective use of FEM Modal Analysis”, <Modal Analysis>, Vol. 10 no.3, pp.178~186
    10.Cheng-Jung Li and Asok Ray, 1995, “Neural Network Representation of Fatigue Damage Dynamic”, <Smart Materials and Structures>, Vol. 4, pp.126~133
    11.Pandey A.K. and Biswas M., 1995, “Damage Diagnosis of Truss Structures by Estimation of Flexibility Change”, <Modal Analysis>, Vol. 10 no.2, pp.104~117
    12.Szewczyk Z.P. & Hajela P., 1994, “Damage detection in structure based on feature-sensitive neural network”, J. Comput. Civil Engng. ASCE, Vol. 8, pp.163~178
    13.劉興業、王海超、鄧文樵,1996,“人工神經元網路在公路工程震害預測方面的應用”,<地震工程與工程振動>,第16卷4期,pp.97~104
    14.黃崇福,1993,“模糊人工神經元網路在地震工程中的應用”,<地震工程與工程振動>,第13卷2期,pp.84~92
    15.徐敬海、鄧偉慶、鄭民憲,Dec. 2002,“建築物震害預測模糊震害指數法”,<地震工程工程震動>,第22卷6期,pp.84~88
    16.瞿偉廉、陳偉,2002,“多層及高層框架結構地震損傷診斷的神經網路方法”,<地震工程與工程振動>,第22卷1期,pp.43~48
    17.瞿偉廉、黃東梅,2003,“高聳塔架結構節點損傷基於神經網路的兩步診斷法”,<地震工程與工程振動>,第23卷2期,pp.143~149
    18.葉怡成,1992,“機器學習在土木工程專家系統應用之研究”,<成功大學土木研究所博士論文>,pp.30~41,成功大學,台南
    19.林子超,1997,“類神經網路在結構損傷偵測分析的應用”,<成功大學航太工程研究所碩士論文>,成功大學,台南
    20.褚朝慶,1998,“系統識別與類神經網路在橋樑破壞檢測的應用”,<台灣大學土木工程研究所碩士論文>,台灣大學,台北
    21.黃心豪,1999,“時空域類神經網路於橋樑破壞檢測的應用”,<台灣大學土木工程研究所碩士論文>,台灣大學,台北
    22.吳吉峰,2000,“系統識別與類神經網路於碧潭橋破壞檢測之應用”,<台灣大學土木工程研究所碩士論文>,台灣大學,台北
    23.凃宗廷,2001,“類神經網路於房屋結構系統識別之應用”,<交通大學土木工程研究所碩士論文>,交通大學,新竹
    24.蔡中暉、徐德修,1998, “以類神經網路評估鋼筋混凝土結構之損壞”,<Journal of the Chinese Institute of Civil and Hydraulic Engineering>,Vol. 10 no.1,pp.31~38
    25.曹增皓、蔡中暉、徐德修,2000,“以震動訊號及類神經網路作既有鋼筋混凝土損壞診斷之研究”,<八十八年電子計算機於土木水利工程應用研討會論文集>,pp.1799~1807,中興大學,台中
    26.姜紹飛,2002,<基於類神經網路的結構優化與損傷檢測>,科學出版社,北京
    27.楊玉成、黃浩華、孫景江、陸錫蕾,Mar. 1995,“七層鋼筋混凝土異型柱支撐框架結構膜型震動台試驗研究”,<地震工程與工程震動>,15卷1期,pp.53~65
    28.練乃齊,1993,“鋼結構破壞部位診斷之理論與數值分析”,<成功大學建築研究所碩士論文>,成功大學,台南
    29.賴立中,2000,“集鹿斜張橋受921集集地震作用之破壞分析”,<成功大學土木研究所博士論文>,成功大學,台南
    30.洪文岳,2001,“鋼筋混凝土抗彎構架系統之集集大地震非線性分析”,<成功大學土木研究所博士論文>,成功大學,台南
    31.SAP2000使用手冊
    32.Sameh S. F. Mehanny, Hiroshi Kuramoto, and Gregory G. Deierlein, 2001, “Stiffness Modeling of Reinforced Concrete Beam-Columns for Frame Analysis”, <ACI structural Journal>, March-April, pp.215~225
    33.張志強,2003,“建築結構強震監測與參數識別”,<中興大學土木工程研究所碩士論文>,pp.40~43,中興大學,台中
    34.陳卓彥,2004,“電信鐵塔之結構動力行為分析”,<成功大學建築研究所碩士論文>,成功大學,台南
    35.羅華強,2001,“類神經網路─MATLAB的應用”,清蔚科技出版,新竹
    36.葉怡成,1999,“類神經網路模式應用與實作”,儒林圖書有限公司
    37.黃宗富,2002,“建築結構開裂隔間牆剩餘耐震能力評估”,<中興大學土木工程研究所碩士論文>,中興大學,台中

    下載圖示 校內:立即公開
    校外:2004-07-27公開
    QR CODE