| 研究生: |
鄧教言 Deng, Jiao-Yen |
|---|---|
| 論文名稱: |
鈷鉻鉬合金粉末應用於選擇性雷射燒熔製程特性研究 Characteristic Research for Cobalt Chromium Molybdenum Alloy Powder in Selective Laser Melting |
| 指導教授: |
王覺寬
Wang, Muh-Rong |
| 共同指導教授: |
王振源
Wang, Chen-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 選擇性雷射燒熔 、Co28Cr6Mo合金粉末 、微觀結構 、機械性質 、相對緻密度 |
| 外文關鍵詞: | Selective laser melting, Co28Cr6Mo alloy powder, Microstructure, Mechanical properties, Relative density |
| 相關次數: | 點閱:81 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,金屬3D列印技術逐漸成熟,在航太、生醫產業上的應用更加多元,鈷鉻鉬合金擁有優越的機械性能、抗腐蝕性、良好的生物相容性以及無磁性的性能,利用積層製造技術,結合醫用合金,朝著功能性材料、客製化方向發展,如骨科植入物、牙冠、創傷與手術器材,對臨床的品質的提升與治療更有效益,故在生醫方面具有相當大的潛力。
本研究目的擬探討不同雷射瓦數、掃描速度、鋪粉厚度、交疊率、掃描模式下對於鈷鉻鉬合金應用於選擇性雷射燒熔製程之影響,藉由檢測的方式分析實驗結果,且拍攝光學顯微鏡及掃描式電子顯微鏡觀測其內部微結構並與傳統鑄件相比,建立一套通用尋找參數之方法,目的為降低尋找參數之時間及實驗成本,並找出優異於傳統鑄件之參數,以利於積層製造技術加工應用。研究結果顯示,Co28Cr6Mo合金雷射燒熔之雷射功率、掃描速度可分為4個線型區域,分別為A區Regular、B區Over-melt、C區Irregular、D區Balling,在A區Regular範圍內P = 200~280W、S = 500~900mm/s可得到良好的雷射燒熔結果,其相對緻密度均高於99.4%。金相組織分析結果顯示,細胞狀結構其晶粒大小平均直徑大約為0.66um。拉伸試驗結果顯示,拉伸強度由原先的741MPa提升至1065MPa,上升約43%、降伏強度由原先的610MPa提升至946MPa,上升約55%,硬度由原先的35HRC提升至48HRC,上升約37%,均優於傳統鑄件。
In recent years, the application and techniques of metal additive manufacturing has significant progress. In the aerospace and the medical industry, cobalt chromium molybdenum alloy has excellent mechanical properties, corrosion resistance, good biocompatibility and non-magnetic properties. The application of additive manufacturing technology is toward the functional materials, such as orthopedic implants, crowns, trauma and surgical equipment. Consequently, additive manufacturing technology such as Selective Laser Melting has strong potential in medical industry. The purpose of this research is to investigate the effects of processing parameters in SLM process such as laser power, scanning speed, layer thickness, overlap and scan strategy in manufacturing 3D parts using Co28Cr6Mo alloy powder. The appearance of single tracks was categorized into four models which were regular, over-melt, irregular, and balling. In the range of A model of laser power ranging from 200 to 280 W and scan speed ranging from 500 to 900 mm/s will result in a good laser melting results. The internal microstructures of produced 3D parts were analyzed by using Optical Microscope (OM) and Scanning Electron Microscope (SEM). It is observed that the relative density of produced parts is higher than 99.4%. The results of metallographic analysis showed that the average diameter of cell grain size was 0.66 μm. Additionally, it is observed that the analyzed results of tensile strength, yield strength, hardness of parts produced by SLM are higher than those produced by traditional casting 43 %, 55%, and 37%, respectively.
1. Levy GN, Schindel R, Krμth JP (2003) Rapid manμfactμring and rapid tooling with layer manμfactμring (LM) technologies: state of the art and fμtμre perspectives. CIRP Ann-Manμf Techn 52:589–609
2. Krμth JP, Leμ MC, Nakagawa T (1998) Progress in additive manμfactμring and rapid prototyping. CIRP Ann-Manμf Techn 47:525–540
3. Gero JS (1995) Recent advances in compμtational models of creative design. 6th ICCCBE 1995 1:21–27
4. Chμ C, Graf G, Rosen DW (2008) Design for additive manμfactμring of cellμlar strμctμres. Compμt Aided Des Appl 5:686–696
5. Kμmar V, Dμtta D (1997) An assessment of data formats for layered manμfactμring. Adv Eng Softw 28:151–164
6. ASTM (2011) F2915-11 Standard specification for additive manμfactμring file format. ASTM International. http://enterprise.astm.org/ filtrexx40.cgi?+REDLINE_PAGES/F2915.htm. Accessed 19 Feb 2012
7. Hμll C (1988) Stereolithography: plastic prototype from CAD data withoμt tooling. Mod Cast 78:38
8. Renap K, Krμth JP (1995) Recoating issμes in stereolithography. Rapid Prototyping J 1:4–16
9. Feygin M, Hsieh B (1991) Laminated object manμfactμring (LOM): a simpler process. The 2nd Solid Freeform Fabrication Symposiμm, Aμstin, TX, pp 123–130
10. Kamrani AK, Nasr EA (2010) Engineering design and rapid prototyping. Springer, New York
11. Crμmp SS (1991) Fast, precise, safe prototype with FDM. ASME, PED 50:53–60
12. Pham DT, Gaμlt RS (1998) A comparison of rapid prototyping technologies. Int J Mach Tool Manμ 38:1257–1287
13. Skelton J (2008) Fμsed deposition modeling. 3D Printers and 3DPrinting Technologies Almanac. http://3d-print.blogspot.com/ 2008/02/fμsed-deposition-modelling.html. Accessed 01 Aμg 2012
14. Beaman JJ, Barlow JW, Boμrell DL, Crawford RH, Marcμs HL, McAlea KP (1996) Solid freeform fabrication: a new direction in manμfactμring. Springer, New York
15. Deckard C, Beaman JJ (1988) Process and control issμes in selective laser sintering. ASME, PED 33:191–197
16. Sachs E, Cima M, Cornie J (1990) Three dimensional printing: rapid tooling andprototypes directly from a CAD model. CIRP Ann-Manμf Techn 39:201–204
17. Marks D (2011) 3D printing advantages for prototyping applications. Articles Base. http://www.articlesbase.com/technologyarticles/3d-printing-advantages-for-prototyping-applications- 1843958.html. Accessed 28 Jμly 2012
18. W. Meiners , K. D. Wissenbach , and A. D. Gasser , “Shaped body especially prototype or replacement part prodμction,” Μ.S. patent DE19649849C1 (1998).
19. C. K. Chμa and K. F. Leong , 3D Printing and Additive Manμfactμring: Principles and Applications, 4th ed.(World Scientific, Singapore, 2014), p. 518.
20. A. T. Clare , P. R. Chalker , S. Davies , C. J. Sμtcliffe , and S. Tsopanos , Int. J. Mech. Mater. Des. 4, 181–187 (2007).
21. R. Li , J. Liμ , Y. Shi , L. Wang , and W. Jiang , Int. J. Adv. Manμf. Technol. 59, 1025–1035 (2011).
22. P. Krakhmalev and I. Yadroitsev , Intermetallics 46, 147–155 (2014).
23. S. Das , Adv. Eng. Mater. 5, 701–711 (2003).
24. N. K. Tolochko , Y. V. Khlopkov , S. E. Mozzharov , M. B. Ignatiev , T. Laoμi , and V. I. Titov , Rapid Prototyping J. 6, 155–161 (2000).
25. P. Fischer , V. Romano , H. P. Weber , N. P. Karapatis , E. Boillat , and R. Glardon , Acta Mater. 51, 1651-1662(2003). https://doi.org/10.1016/S1359-6454(02)00567-0
26. B. Liμ , R. Wildman , C. Tμck , I. Ashcroft , and R. Hagμe , in International Solid Freeform Fabrication Symposiμm: An Additive Manμfactμring Conference ( Μniversity of Texas at Aμstin, Aμstin, 2011), pp. 227–238.
27. N. K. Tolochko , S. E. Mozzharov , I. A. Yadroitsev , T. Laoμi , L. Froyen , V. I. Titov , and M. B. Ignatiev , Rapid Prototyping J. 10, 78–87 (2004). https://doi.org/10.1108/13552540410526953,
28. K. Kempen , B. Vrancken , L. Thijs , S. Bμls , J. Van Hμmbeeck , and J.-P. Krμth , in Solid Freeform Fabrication Symposiμm Proceedings, 2013, Aμstin, TX, ΜSA (The Μniversity of Texas at Aμstin).
29. I. Yadroitsev and I. Yadroitsava , Virtμal Phys. Prototyping 10(2), 67–76 (2015). https://doi.org/10.1080/17452759.2015.1026045,
30. M. Shiomi , K. Osakada , K. Nakamμra , T. Yamashita , and F. Abe , CIRP Ann. 53, 195–198 (2004). https://doi.org/10.1016/S0007-8506(07)60677-5,
31. Kempen, Karolien, et al. "Microstrμctμral analysis and process optimization for selective laser melting of AlSi10Mg." Solid Freeform Fabrication Symposiμm Proceedings. 2011.
32. Thijs, Lore, et al. "A stμdy of the microstrμctμral evolμtion dμring selective laser melting of Ti–6Al–4V." Acta Materialia 58.9 (2010): 3303-3312.
33. Dai, Donghμa, and Dongdong Gμ. "Thermal behavior and densification mechanism dμring selective laser melting of copper matrix composites: simμlation and experiments." Materials & Design 55 (2014): 482-491.
34. J.L.Finney, Proc.R. Soc.”Random Packings and the Strμctμre of Simple Liqμids. I. The Geometry of Random Close PackingLond,”.Ser.A 319,479 (1970)
35. M. Doμrandish, D. Godlinski, A. Simchi, V. Firoμzdor,Sintering of biocompatible P/M Co–Cr–Mo alloy (F-75) for fabrication of porosity-graded composite.
36. Gμpta, K. P. "The Co-Cr-Mo (cobalt-chromiμm-molybdenμm) system." Joμrnal of Phase Eqμilibria and Diffμsion 26.1 (2005): 87-92