簡易檢索 / 詳目顯示

研究生: 鄧教言
Deng, Jiao-Yen
論文名稱: 鈷鉻鉬合金粉末應用於選擇性雷射燒熔製程特性研究
Characteristic Research for Cobalt Chromium Molybdenum Alloy Powder in Selective Laser Melting
指導教授: 王覺寬
Wang, Muh-Rong
共同指導教授: 王振源
Wang, Chen-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 94
中文關鍵詞: 選擇性雷射燒熔Co28Cr6Mo合金粉末微觀結構機械性質相對緻密度
外文關鍵詞: Selective laser melting, Co28Cr6Mo alloy powder, Microstructure, Mechanical properties, Relative density
相關次數: 點閱:81下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,金屬3D列印技術逐漸成熟,在航太、生醫產業上的應用更加多元,鈷鉻鉬合金擁有優越的機械性能、抗腐蝕性、良好的生物相容性以及無磁性的性能,利用積層製造技術,結合醫用合金,朝著功能性材料、客製化方向發展,如骨科植入物、牙冠、創傷與手術器材,對臨床的品質的提升與治療更有效益,故在生醫方面具有相當大的潛力。
    本研究目的擬探討不同雷射瓦數、掃描速度、鋪粉厚度、交疊率、掃描模式下對於鈷鉻鉬合金應用於選擇性雷射燒熔製程之影響,藉由檢測的方式分析實驗結果,且拍攝光學顯微鏡及掃描式電子顯微鏡觀測其內部微結構並與傳統鑄件相比,建立一套通用尋找參數之方法,目的為降低尋找參數之時間及實驗成本,並找出優異於傳統鑄件之參數,以利於積層製造技術加工應用。研究結果顯示,Co28Cr6Mo合金雷射燒熔之雷射功率、掃描速度可分為4個線型區域,分別為A區Regular、B區Over-melt、C區Irregular、D區Balling,在A區Regular範圍內P = 200~280W、S = 500~900mm/s可得到良好的雷射燒熔結果,其相對緻密度均高於99.4%。金相組織分析結果顯示,細胞狀結構其晶粒大小平均直徑大約為0.66um。拉伸試驗結果顯示,拉伸強度由原先的741MPa提升至1065MPa,上升約43%、降伏強度由原先的610MPa提升至946MPa,上升約55%,硬度由原先的35HRC提升至48HRC,上升約37%,均優於傳統鑄件。

    In recent years, the application and techniques of metal additive manufacturing has significant progress. In the aerospace and the medical industry, cobalt chromium molybdenum alloy has excellent mechanical properties, corrosion resistance, good biocompatibility and non-magnetic properties. The application of additive manufacturing technology is toward the functional materials, such as orthopedic implants, crowns, trauma and surgical equipment. Consequently, additive manufacturing technology such as Selective Laser Melting has strong potential in medical industry. The purpose of this research is to investigate the effects of processing parameters in SLM process such as laser power, scanning speed, layer thickness, overlap and scan strategy in manufacturing 3D parts using Co28Cr6Mo alloy powder. The appearance of single tracks was categorized into four models which were regular, over-melt, irregular, and balling. In the range of A model of laser power ranging from 200 to 280 W and scan speed ranging from 500 to 900 mm/s will result in a good laser melting results. The internal microstructures of produced 3D parts were analyzed by using Optical Microscope (OM) and Scanning Electron Microscope (SEM). It is observed that the relative density of produced parts is higher than 99.4%. The results of metallographic analysis showed that the average diameter of cell grain size was 0.66 μm. Additionally, it is observed that the analyzed results of tensile strength, yield strength, hardness of parts produced by SLM are higher than those produced by traditional casting 43 %, 55%, and 37%, respectively.

    摘要 I 英文延伸摘要(EXTENDED ABSTRACT) II 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 符號表 XVIII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 積層製造技術之發展歷程 2 1-2-2 選擇性雷射燒熔中的物理現象 8 1-2-3 選擇性雷射燒熔製程相關研究 14 1-3 研究動機與目的 23 第二章 實驗設備及量測儀器 24 2-1 選擇性雷射燒熔製程實驗設備 24 2-1-1 金屬粉床式積層製造實驗設備(AM-250) 25 2-1-2 空氣壓縮機 26 2-1-3 壓縮空氣冷凍式乾燥機 26 2-1-4 氮氣產生器 27 2-1-5 氧氣分析儀 28 2-1-6 高功率雷射 28 2-2 檢測儀器 29 2-2-1 金相顯微鏡 29 2-2-2 高精密電子萬能材料試驗機 30 2-2-3 研磨拋光機 31 2-2-4 掃描式電子顯微鏡(SEM) 32 2-2-5 維克氏硬度試驗機 33 2-2-6 X光繞射儀(XRD) 34 第三章 實驗步驟及方法 36 3-1 實驗參數規劃 36 3-2 實驗材料 37 3-3 選擇性雷射燒熔製程步驟 38 3-4 鈷鉻鉬合金孔隙度量測 41 3-4-1 利用電化學腐蝕鈷鉻鉬合金觀察其金相 41 3-4-2 鈷鉻鉬合金之形貌觀察 41 3-4-3 鈷鉻鉬合金之顯微組織分析 42 3-4-4 鈷鉻鉬合金之硬度量測 42 第四章 結果與討論 43 4-1 SLM製程之線掃描實驗 43 4-1-1 鋪粉厚度對於燒熔線之影響 43 4-1-2 燒熔線線型之區域圖 50 4-1-3 雷射瓦數及掃描速度對於燒熔線線寬之影響 51 4-1-4 雷射瓦數及掃描速度對於能量密度之影響 52 4-2 SLM製程之面掃描實驗 53 4-2-1 交疊率對於面掃描之影響 55 4-2-2 掃描模式對於面掃描之影響 59 4-3 SLM製程之體掃描實驗 66 4-3-1 理想狀態下鋪粉厚度對於燒熔高度之影響 66 4-3-2 固定雷射瓦數下掃描速度對於緻密度之影響 70 4-3-3 燒熔線線型對於體掃描之影響 73 4-4 Co28Cr6Mo燒熔試片之金相組織及晶體分析 77 4-4-1 電化學腐蝕之實驗結果 78 4-4-2 A區Regμlar線型參數燒熔表面之形貌觀察 83 4-4-3 Co28Cr6Mo燒熔試片之XRD晶體分析 86 4-5 鈷鉻鉬合金之拉伸試驗結果 88 第五章 結論 89 參考文獻 91

    1. Levy GN, Schindel R, Krμth JP (2003) Rapid manμfactμring and rapid tooling with layer manμfactμring (LM) technologies: state of the art and fμtμre perspectives. CIRP Ann-Manμf Techn 52:589–609
    2. Krμth JP, Leμ MC, Nakagawa T (1998) Progress in additive manμfactμring and rapid prototyping. CIRP Ann-Manμf Techn 47:525–540
    3. Gero JS (1995) Recent advances in compμtational models of creative design. 6th ICCCBE 1995 1:21–27
    4. Chμ C, Graf G, Rosen DW (2008) Design for additive manμfactμring of cellμlar strμctμres. Compμt Aided Des Appl 5:686–696
    5. Kμmar V, Dμtta D (1997) An assessment of data formats for layered manμfactμring. Adv Eng Softw 28:151–164
    6. ASTM (2011) F2915-11 Standard specification for additive manμfactμring file format. ASTM International. http://enterprise.astm.org/ filtrexx40.cgi?+REDLINE_PAGES/F2915.htm. Accessed 19 Feb 2012
    7. Hμll C (1988) Stereolithography: plastic prototype from CAD data withoμt tooling. Mod Cast 78:38
    8. Renap K, Krμth JP (1995) Recoating issμes in stereolithography. Rapid Prototyping J 1:4–16
    9. Feygin M, Hsieh B (1991) Laminated object manμfactμring (LOM): a simpler process. The 2nd Solid Freeform Fabrication Symposiμm, Aμstin, TX, pp 123–130
    10. Kamrani AK, Nasr EA (2010) Engineering design and rapid prototyping. Springer, New York
    11. Crμmp SS (1991) Fast, precise, safe prototype with FDM. ASME, PED 50:53–60
    12. Pham DT, Gaμlt RS (1998) A comparison of rapid prototyping technologies. Int J Mach Tool Manμ 38:1257–1287
    13. Skelton J (2008) Fμsed deposition modeling. 3D Printers and 3DPrinting Technologies Almanac. http://3d-print.blogspot.com/ 2008/02/fμsed-deposition-modelling.html. Accessed 01 Aμg 2012
    14. Beaman JJ, Barlow JW, Boμrell DL, Crawford RH, Marcμs HL, McAlea KP (1996) Solid freeform fabrication: a new direction in manμfactμring. Springer, New York
    15. Deckard C, Beaman JJ (1988) Process and control issμes in selective laser sintering. ASME, PED 33:191–197
    16. Sachs E, Cima M, Cornie J (1990) Three dimensional printing: rapid tooling andprototypes directly from a CAD model. CIRP Ann-Manμf Techn 39:201–204
    17. Marks D (2011) 3D printing advantages for prototyping applications. Articles Base. http://www.articlesbase.com/technologyarticles/3d-printing-advantages-for-prototyping-applications- 1843958.html. Accessed 28 Jμly 2012
    18. W. Meiners , K. D. Wissenbach , and A. D. Gasser , “Shaped body especially prototype or replacement part prodμction,” Μ.S. patent DE19649849C1 (1998).
    19. C. K. Chμa and K. F. Leong , 3D Printing and Additive Manμfactμring: Principles and Applications, 4th ed.(World Scientific, Singapore, 2014), p. 518.
    20. A. T. Clare , P. R. Chalker , S. Davies , C. J. Sμtcliffe , and S. Tsopanos , Int. J. Mech. Mater. Des. 4, 181–187 (2007).
    21. R. Li , J. Liμ , Y. Shi , L. Wang , and W. Jiang , Int. J. Adv. Manμf. Technol. 59, 1025–1035 (2011).
    22. P. Krakhmalev and I. Yadroitsev , Intermetallics 46, 147–155 (2014).
    23. S. Das , Adv. Eng. Mater. 5, 701–711 (2003).
    24. N. K. Tolochko , Y. V. Khlopkov , S. E. Mozzharov , M. B. Ignatiev , T. Laoμi , and V. I. Titov , Rapid Prototyping J. 6, 155–161 (2000).
    25. P. Fischer , V. Romano , H. P. Weber , N. P. Karapatis , E. Boillat , and R. Glardon , Acta Mater. 51, 1651-1662(2003). https://doi.org/10.1016/S1359-6454(02)00567-0
    26. B. Liμ , R. Wildman , C. Tμck , I. Ashcroft , and R. Hagμe , in International Solid Freeform Fabrication Symposiμm: An Additive Manμfactμring Conference ( Μniversity of Texas at Aμstin, Aμstin, 2011), pp. 227–238.
    27. N. K. Tolochko , S. E. Mozzharov , I. A. Yadroitsev , T. Laoμi , L. Froyen , V. I. Titov , and M. B. Ignatiev , Rapid Prototyping J. 10, 78–87 (2004). https://doi.org/10.1108/13552540410526953,
    28. K. Kempen , B. Vrancken , L. Thijs , S. Bμls , J. Van Hμmbeeck , and J.-P. Krμth , in Solid Freeform Fabrication Symposiμm Proceedings, 2013, Aμstin, TX, ΜSA (The Μniversity of Texas at Aμstin).
    29. I. Yadroitsev and I. Yadroitsava , Virtμal Phys. Prototyping 10(2), 67–76 (2015). https://doi.org/10.1080/17452759.2015.1026045,
    30. M. Shiomi , K. Osakada , K. Nakamμra , T. Yamashita , and F. Abe , CIRP Ann. 53, 195–198 (2004). https://doi.org/10.1016/S0007-8506(07)60677-5,
    31. Kempen, Karolien, et al. "Microstrμctμral analysis and process optimization for selective laser melting of AlSi10Mg." Solid Freeform Fabrication Symposiμm Proceedings. 2011.
    32. Thijs, Lore, et al. "A stμdy of the microstrμctμral evolμtion dμring selective laser melting of Ti–6Al–4V." Acta Materialia 58.9 (2010): 3303-3312.
    33. Dai, Donghμa, and Dongdong Gμ. "Thermal behavior and densification mechanism dμring selective laser melting of copper matrix composites: simμlation and experiments." Materials & Design 55 (2014): 482-491.
    34. J.L.Finney, Proc.R. Soc.”Random Packings and the Strμctμre of Simple Liqμids. I. The Geometry of Random Close PackingLond,”.Ser.A 319,479 (1970)
    35. M. Doμrandish, D. Godlinski, A. Simchi, V. Firoμzdor,Sintering of biocompatible P/M Co–Cr–Mo alloy (F-75) for fabrication of porosity-graded composite.
    36. Gμpta, K. P. "The Co-Cr-Mo (cobalt-chromiμm-molybdenμm) system." Joμrnal of Phase Eqμilibria and Diffμsion 26.1 (2005): 87-92


    下載圖示 校內:2022-07-01公開
    校外:2022-07-01公開
    QR CODE