簡易檢索 / 詳目顯示

研究生: 陳盈志
Chen, Ying-Chih
論文名稱: 應用MEMS熱膜感測器於穿音速模型 之流場量測
The Applications of MEMS Thermal Film Sensor Arrays on the Measurement of Transonic Models
指導教授: 苗君易
Miau, Jiun-Jih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 91
中文關鍵詞: 矩形斜面平板模型穿音速風洞MEMS熱膜感測器彈體模型
外文關鍵詞: tangent ogive missile, convex corner, transonic wind tunnel, MEMS thermal film sensor
相關次數: 點閱:87下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用自製之可撓式熱膜感測器陣列,應用在傾角15°之矩形斜面平板模型(convex corner)以及彈頭細長比(fineness ratio)為2之彈體模型(tangent ogive missile)於穿音速風洞之流場量測,並使用DC與AC兩種不同的訊號放大電路分別量測流場的熱傳以及擾動現象,依據流場在分離位置的熱傳效應最不理想,以及訊號之間相關性係數較低的資訊,找出流場分離位置的訊號特性。
    Convex corner模型量測上,配合小波轉換分析找出震波移動現象與下游流場分離之間的關係,發現在馬赫數為0.8的狀況下會有震波形成,而明顯的震波移動會使得分離位置發生頻率範圍在1~2KHz之間的特徵頻率。彈體模型的量測主要藉由熱傳效應的變化以及相鄰感測器之間擾動量的相關性係數觀察分離發生的位置,找出主要分離線以及二次分離線發生的位置。

    The experiment was carried out to examine the applications of thermal film sensor arrays on a convex corner model and an tangent ogive missile body with fineness ratio of 2 in transonic wind tunnel. AC and DC amplifier circuits were employed to study the unsteady characteristics of flow separation downstream of the convex corner; and identify the signal properties in the neighborhood of location of separation on the surface of the ogive cylinder, respectively.
    Using wavelet transform analysis of the fluctuation signals enabled to find that the unsteady motions of shock wave motion on the convex corner model at Mach number 0.8 would induce 1K~2KHz characteristic frequency near the separation position. On the measurement of the tangent ogive missile body, the observations of the heat transfer efficiency and the correlation of the thermal film signals enabled to identify the separation position. As the heat transfer efficiency and the correlation coefficient would drop significantly around the separation position, one was able to identify the positions of the primary separation and secondary separation on the ogive cylinder model.

    頁次 中文摘要………………………………………………………………I 英文摘要………………………………………………………………II 致謝……………………………………………………………………III 目錄……………………………………………………………………IV 表目錄…………………………………………………………………VII 圖目錄…………………………………………………………………VIII 符號說明………………………………………………………………XI 一、序論……………………………………………………………………1 1.1 研究動機與目的…………………………………………………………1 1.2 高攻角彈體文獻回顧……………………………………………………2 1.3凸角雙矩形平板(Convex corner)文獻回顧………………………………8 1.4 MEMS熱膜感測器回顧…………………………………………………10 二、實驗設備與模型…………………………………………………………12 2.1穿音速風洞……………………………………………………………12 2.2實驗模型………………………………………………………………13 2.2.1 Convex corner壓力量測模型…………………………………….13 2.2.2 Convex corner熱膜感測器量測模型…………………………14 2.2.3 彈體油流與壓力量測模型………………………………………15 2.2.4 彈體熱膜感測器量測模型………………………………………15 2.2.5 DC訊號放大電路…………………………………………………16 2.2.6 AC訊號放大電路…………………………………………………16 2.2.7資料擷取系統………………………………………………………17 2.3 熱膜感測器原理與製作………………………………………………18 2.3.1 鉑熱絲電阻感測原理………………………………………………18 2.3.2 熱膜感測器製程……………………………………………………19 三、實驗方法與步驟……………………………………………………………25 3.1穿音速風洞測試條件…………………………………………………………25 3.2 Convex corner於穿音速風洞實驗之參數設定……………………25 3.3彈體於穿音速風洞實驗之參數設定………………………………………25 3.4 小波理論(Wavelet Theory)…………………………………………………………27 3.4.1連續小波轉換(Continuous Wavelet Transform, CWT)……………28 3.5 相關性分析(Correlation analysis)……………………………………30 四、結果與討論………………………………………………………………31 4.1 Convex corner模型實驗結果觀察.………………………………………31 4.1.1 壓力感測器量測…………………………………………………31 4.1.2 MEMS熱膜感測器量測(使用DC訊號放大電路)………………32 4.1.3 MEMS熱膜感測器量測(使用AC訊號放大電路)………………33 4.1.4 Convex corner模型訊號量測結果討論……………………………35 4.2 穿音速彈體模型實驗結果觀察………………………………………36 4.2.1 MEMS熱膜感測器量測(使用DC訊號放大電路)…………………36 4.2.2 MEMS熱膜感測器量測(使用AC訊號放大電路)…………………39 4.2.3彈體模型訊號量測結果討論……………………………………40 五、 結論與建議……………………………………………………………45 5.1 結論……………………………………………………………………45 5.2 未來建議………………………………………………………………46 六、 參考文獻………………………………………………………………47

    [1] Nielsen, J. N., “Missile Aerodynamics-Past, Present, Future,” Journal of spacecraft and rockets, vol.17, 1980, no.3, pp. 165-176.
    [2] Allen, H. J., and Perkins, E. W., “Characteristics of Flow over Inclined Bodies of Revolution,” NACA RM50L07, 1951.
    [3] Reding, J.P. and Ericsson, L. E., “Maximum Vortex-Induced Side Force,” Journal of Spacecraft, Vol. 15, no.4, 1978, pp.201-207.
    [4] Reding, J.P. and Ericsson, L. E., “Alleviation of Vortex-Induced Asymmetric Loads,” Journal of Spacecraft, Vol. 17, no.6, 1980, pp.546-553.
    [5] Keener, E. R. and Chapman, G. T., “Similarity in Vortex Asymmetries over Slender Bodies and Rockets and Wings”, AIAA Journal, Vol. 15, no.9, Sept, 1977, pp. 1370-1372.
    [6] Lamont, P. J. and Hunt, B. L., “Prediction of Aerodynamic Out-of-Plane Forces on Ogive-Nosed Circular Cylinder,” Journal of Spacecraft and Rockets, Vol. 14, no.1, 1977, pp. 38-44.
    [7] Peake, D. J., Rainbird, W. J. and Atraghji, E. G., “Three-Dimensional Flow Separations on Aircraft and Missiles,” AIAA Journal, Vol.10, no.5, 1972, pp. 567-580.
    [8] Brandon, J. M. and Nguyen, L. T., “Experimental Study of Effect of Forebody Geometry on High-Angle-of-Attack Stability,” Journal of Aircraft, Vol. 25, no. 7, 1988, pp. 591-597.
    [9] Luo, S. C., Lim, T. T., Lua, K. B., and Chia, H. T., “Flowfield Around Ogive/Elliptic-Tip Cylinder at High Angle of Attack,” AIAA journal, Vol.36, no. 10, 1998, pp. 1778-1787.
    [10] Roshko, A., “Experiments on the Flow Past a Circular Cylinder at Very High Reynolds Number," Journal of Fluid Mechanics, Vol.10, no.3, 1961, pp. 345-356.
    [11] Nelson, R. C. and Fleeman, E. L., “High Angle of Attack Aerodynamics on a Slender Body with a Jet Plume,” Journal of Spacecraft and Rockets, Vol. 12, no. 1, 1975, pp. 12-16.
    [12] Lamont P. J., “Pressures around an Inclined Ogive Cylinder with Laminar, Transitional, or Turbulent Separation,” AIAA Journal, Vol.20, no.11, 1982, pp. 1492-1499.
    [13] Lamont P. J., “The Effect of Reynolds Number on Normal and Side Forces on Ogive Cylinders at High Incidence,” AIAA paper 85-1799, 1985.
    [14] Keener, E. R., “Oil flow separation patterns on an ogive forebody,” AIAA Journal, Vol.21, no.4, 1983, pp. 550-556.
    [15] Ericsson, L. E., “Vortex unsteadiness on slender bodies at high incidence,” Journal of spacecraft and rockets, Vol.24 no.4, 1987, pp. 319-326.
    [16] Ericsson, L. E. and Reding, J. P., “Asymmetric Vortex Shedding from Bodies of Revolution,” Tactical missile aerodynamics (A87-22926 08-02), American Institute of Aeronautics and Astronautics, 1986, p. 243-296.
    [17] Ericsson, L. E., and Reding, J. P., “Asymmetric flow separation and vortex shedding of bodies of revolution,” Tactical missile aerodynamics (A92-39826 16-02), American Institute of Aeronautics and Astronautics, 1992, p. 391-452.
    [18] 邱文彬, “高攻角彈體側向噴流之油流與壓力試驗研究,” 國立成功大學航空太空研究所碩士論文, 2000.
    [19] 周宏聲, “穿音速高攻角彈體視流之研究,” 國立成功大學航空太空研究所碩士論文, 2000.
    [20] 林志華, “穿音速彈體側向噴流之空氣動力試驗研究,” 國立成功大學航空太空研究所碩士論文, 2001.
    [21] Peake, D. J. and Tobak, M., “Three dimensional Separation and Reattachment”, AGARD-LS-121, 1982.
    [22] Lighthill, J., “Attachment and Separation in Three-Dimensional Flow,” in Laminar Boundary Layers, Oxford Univ. Press, Sect. II, 1963, pp.72-82.
    [23] Davey, A., “Boundary Layer Flow at a Saddle Point of Attachment,” Journal of Fluid Mechanics, Vol. 10, 1961, pp.593-610.
    [24] Hunt, J. C. R., Abell, C. J., Peterka, J. A., and Woo, H., “Kinematical Studies of the Flows Around Free or Surface Mounted Obstacles,” Journal of Fluid Mechanics, Vol. 86, no.1, 1978, pp. 179-200.
    [25] Peake, D. J. and Tobak, M., “Three dimensional flows about simple components at angle of attack,” AGARD-LS-121, 1982.
    [26] Rainbird, W. J., Crabbe, R. S. and Jurewicz, L. S., “A water tunnel investigation of the flow separation about circular cones at incident”, NRC-AERO collection, 1963.
    [27] Chung, K. M., Miau, J. J., and Yeh, J. S., “Development and Calibration of ASTRC/NCKU Transonic Wind Tunnel,” NSC 83-0424-E006-141T Report, Taiwan, 1994.
    [28] Delery, J. M., “Experimental Investigation of Turbulent Properties in Transonic Shock/Boundary- Layer Interactions,” AIAA journal, Vol. 21, no.2, 1983, pp. 180-185.
    [29] Liu X., and Squire, L. C., “An Investigation of Shock/Boundary-Layer Interactions on Curved Surfaces at Transonic Speeds,” Journal of Fluid Mechanics, Vol. 187, 1988, pp. 467- 486.
    [30] Muck, K., Andreopoulos, J., and Dussauge, J., “Unsteady Nature of Shock-Wave/Turbulent Boundary-Layer Interaction,” AIAA journal, Vol. 26, no.2, 1988, pp. 179-187.
    [31] Or, C. T., and Dolling, D. S., “Unsteadiness of the Shock Wave Structure in Attached and Separated Compression Ramp Flows,” Experiments in fluids, Vol.3, no.1, 1985, pp24-32.
    [32] Murphy, M. T., and Dolling, D. S., “Unsteadiness of the Separation Shock Wave Structure in a Supersonic Compression Ramp Flowfield,” AIAA Journal, Vol.21, no.12, 1983, pp. 1628-1634.
    [33] Chung, K. M., “Investigation on Transonic Convex-Corner Flows,” Journal of Aircraft, Vol. 39, no. 6, 2002, pp. 1014-1018.
    [34] Chung, K. M., “Unsteadiness of Transonic Convex-Corner Flows,” Experiment of Fluids, Vol. 36, no. 1, 2004, pp. 917-922.
    [35] Barth, P.W., Bernard, S.L., and Angell, J.B., “Flexible circuit and sensor arrays fabricated by monolithic silicon technology,” IEEE Trans .Electron. Devices, Vol. ED-32, no.7, 1985, pp. 1202-1205.
    [36] Beebe, D.J., Denton, D.D., Webster, J.G., and Radwin, R.G., “A Polyimide Packaging Process For A Semiconductor Diaphragm Tactile Sensor,” Proc. of the Twelfth Annual International Conference of the IEEE, University of Wisconsin, 1990, pp. 1058-1059.
    [37] Jiang, F., Tai, Y. C., Walsh, K., Tsao, T., Lee, G. B., and Ho, C. M., “A Flexible MEMS Technology and Its First Application to Shear Stress Sensor Skin,” Proc. of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Nagoya, Japan, 26–30 January, 1997, pp. 465–470.
    [38] Xu, Y., Jiang, F., Tai, Y. C., Huang, A., Ho, C. M., and Newbern, S., “Flexible Shear Stress Sensor Skin and its Application to Unmanned Aerial Vehicles,” Sensors and Actuators A: Physical, Vol. 105, 2003, pp. 321-329.
    [39] Jiang, F., Xu, Y., Weng, T., Han, Z., Tai, Y. C., Huang, A., Ho, C. M., and Newbern, S., “Flexible Shear Stress Sensor Skin for Aerodynamic Applications,” Proc. IEEE Int. Conference of Micro Electro Mechanical system (MEMS), Miyazaki, Japan, 2000, pp. 364-369.
    [40] Meng, E., and Tai, Y. C., “A Parylene MEMS Flow Sensing Array,” Proc. of Transducers, the 12th International Conference on Solid-State Sensors, Actuators and Microsystems, Boston, MA, 2003, pp. 686-689.
    [41] Breuer, K. S., “MEMS Sensors for Aerodynamic Application the Good, the Bad,” AIAA paper 2000-0251.
    [42] Anthony, R. J., Jones, T. V., and LaGraff, J. E., “Visualization of Transition Boundary Layer Heat Flux Using High Density Thin Film Array,” AIAA paper 2001-0553.
    [43] 杜榮國, “MEMS熱膜感測器設計製造及應用於探討非定常流動分離現象,” 國立成功大學航空太空工程研究所碩士論文, 2002.
    [44] Lee, G. B., Hu, J. H., and Miau, J. J., “A Flexible Skin with Temperature Sensor Array,” Journal of Chinese Institute of Engineers, Vol. 25, no. 6, 2002, pp. 619-625.
    [45] Chung, K. M., “A Study of Transonic rectangular Cavity of Varying Dimensions,” AIAA paper 99-1909, 1999.

    下載圖示 校內:立即公開
    校外:2006-07-19公開
    QR CODE