| 研究生: |
張雅婷 Chang, Ya-Ting |
|---|---|
| 論文名稱: |
探討亞硝基硫醇的共軛反應及其衍生物之合成研究 The Synthetic Investigation on The S-Nitrosothiol Ligation and Their Related Derivatives |
| 指導教授: |
周鶴軒
Chou, Ho-Hsuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 192 |
| 中文關鍵詞: | 重氮化合物 、有機膦 、S-亞硝基硫醇 、共軛反應 |
| 外文關鍵詞: | Diazo compound, Organophosphorus compound, S-nitrosothiol, ligation |
| 相關次數: | 點閱:79 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要針對開發新的合成方法來進行S-亞硝基硫醇 (RSNOs) 的共軛反應,並對其產物進行衍生化合成。我們利用RSNO和重氮甲基膦酸二甲酯 (dimethyl (diazomethyl)phosphonate,DAMP) 進行增碳反應得到硫氰酸酯與異硫氰酸酯化合物。該反應涉及S-亞硝基硫醇與去質子化的重氮甲基膦酸二甲酯反應形成親和性加成產物,經歷脫除二甲基膦酸鉀得到熱不穩定的重氮烯,再脫去氮氣以進行亞烷基卡賓的重排反應形成穩定的產物。
在過往文獻中,大多數皆使用強鹼 (t-BuOK) 搭配極低溫 (-78 ℃)的環境將重氮甲基膦酸二甲酯去質子化,形成具有親核性的α- 碳負離子。為使共軛反應能在較溫和的條件下進行,在此我們也設計一個不同於以往的反應路徑,使用較溫和的1,8-二氮雜二環[5.4.0]十一碳-7-烯 (DBU) 來活化重氮甲基膦酸二甲酯形成DAMP陰離子。再利用DAMP陰離子與S-亞硝基硫醇進行親核性加成反應,形成硫氰酸酯與異硫氰酸酯化合物。其中一、二級的S-硝基硫醇將得到硫氰酸酯,而三級的S-硝基硫醇會形成異硫氰酸酯化合物,因此經由我們的共軛反應可以區分出一、二級與三級化合物。後續將得到的產物分別進行衍生化反應形成螢光分子以利於監測,期能用於設計S-亞硝化蛋白質的新型生物傳感器。
另外,S-亞硝基硫醇具有許多生物學意義,但很少用於有機合成。在本研究中,該方法的獨特性是最終產物上不具有共軛膦試劑的殘留,因此能有效地將相應硫醇的RSNO轉化為硫氰酸酯或異硫氰酸酯化合物,為RSNO的有機合成提供了新的方法。
A novel ligation of S-nitrosothiols (RSNOs) and the subsequent derivatization were developed in this research. RSNOs underwent a homologation process to afford thiocyanate or isothiocyanate compounds with dimethyl (diazomethyl)phosphonate (DAMP).
Differentiated from the previous literatures that strong bases (t-BuOK or n-BuLi) were selected for the deprotonation of alkenyl proton at low temperature (-78 ℃), an DAMP anion was generated through an induced-deprotonation of dimethyl (diazomethyl)- phosphonate with a mild base 1,8-Diazabicyclo(5.4.0)undec-7-ene (DBU). The in situ carbanion of DAMP participated in the nucleophilic addition onto the electron-deficient RSNO to form a Wittig-type intermediate and rearranged into the final product accompanying with a loss of one molecular of nitrogen gas. Primary, secondary and tertiary S-nitrosothiols can be distinguished in our ligation strategy. The primary and secondary RSNOs gave thiocyanates as, while the tertiary RSNOs afforded corresponding isothiocyanates. Subsequent reactions converted products into fluorescent molecules which could be used as new biosensors of S-nitrosated proteins observation.
Furthermore, S-nitrosothiols have a great number of biological activities, but are rarely used in organic syntheses. This research also provided a practical traceless ligation method of SNO without any phosphine reagent or phosphonate group left and a new method for the organic syntheses of thiocyanates or isothiocyanates from S-nitrosothiols.
1. Bechtold, E.; King, S. B., Chemical methods for the direct detection and labeling of S-nitrosothiols. Antioxid. Redox Signal. 2012, 17, 981-991.
2. Hess, D. T.; Matsumoto, A.; Kim, S. O.; Marshall, H. E.; Stamler, J. S., Protein S-nitrosylation: purview and parameters. Nat. Rev. Mol. Cel. Biol. 2005, 6, 150-166.
3. Lu, D.; Nadas, J.; Zhang, G.; Johnson, W.; Zweier, J. L.; Cardounel, A. J.; Villamena, F. A.; Wang, P. G., 4-Aryl-1,3,2-oxathiazolylium-5-olates as pH-controlled NO-donors: the next generation of S-nitrosothiols. J. Am. Chem. Soc. 2007, 129, 5503-5514.
4. WILLIAMS, D. L. H., The Chemistry of S-Nitrosothiols. Acc. Chem. Res. 1999, 32, 869-876.
5. Wang, K.; Zhang, W.; Xian, M.; Hou, Y. C.; Chen, X. C.; Cheng, J. P.; Wang, P. G., New chemical and biological aspects of S-nitrosothiols. Curr. Med. Chem. 2000, 7, 821-834.
6. Bechtold, E.; Reisz, J. A.; Klomsiri, C.; Tsang, A. W.; Wright, M. W.; Poole, L. B.; Furdui, C. M.; King, S. B., Water-soluble triarylphosphines as biomarkers for protein S-nitrosation. ACS. Chem. Biol. 2010, 5, 405-414.
7. Seneviratne, U.; Godoy, L. C.; Wishnok, J. S.; Wogan, G. N.; Tannenbaum, S. R., Mechanism-based triarylphosphine-ester probes for capture of endogenous RSNOs. J. Am. Chem. Soc. 2013, 135, 7693-7704.
8. Choudhari, S. K.; Chaudhary, M.; Bagde, S.; Gadbail, A. R.; Joshi, V., Nitric oxide and cancer: a review. J. Surg. Oncol. 2013, 11, 118-128.
9. Gaston, B.; Singel, D.; Doctor, A.; Stamler, J. S., S-nitrosothiol signaling in respiratory biology. Am. J. Respir. Crit. Care Med. 2006, 173, 1186-1193.
10. Basu, S.; Wang, X.; Gladwin, M. T.; Kim-Shapiro, D. B., Chemiluminescent detection of S-nitrosated proteins: comparison of tri-iodide, copper/CO/cysteine, and modified copper/cysteine methods. Methods Enzymol. 2008, 440, 137-156.
11. Wink, D. A.; Kim, S.; Coffin, D.; Cook, J. C.; Vodovotz, Y.; Chistodoulou, D.; Jourd'heuil, D.; Grisham, M. B., Detection of S-nitrosothiols by fluorometric and colorimetric methods. Methods Enzymol. 1999, 301, 201-211.
12. Schafer, O.; Huesmann, D.; Muhl, C.; Barz, M., Rethinking Cysteine Protective Groups: S-Alkylsulfonyl-l-Cysteines for Chemoselective Disulfide Formation. Chem. Eur. J. 2016, 22, 18085-18091.
13. Haake, M., Zur desoxygenierung von tritylthionitrit. Tetrahedron Lett. 1972, 13, 3405-3408.
14. Wang, H.; Xian, M., Fast reductive ligation of S-nitrosothiols. Angew. Chem. Int. Ed. 2008, 47, 6598-6601.
15. Zhang, J.; Wang, H.; Xian, M., An unexpected Bis-ligation of S-nitrosothiols. J. Am. Chem. Soc. 2009, 131, 3854-3855.
16. Zhang, J.; Wang, H.; Xian, M., Exploration of the "traceless" reductive ligation of S-nitrosothiols. Org. Lett. 2009, 11, 477-480.
17. Zhang, J.; Li, S.; Zhang, D.; Wang, H.; Whorton, A. R.; Xian, M., Reductive ligation mediated one-step disulfide formation of S-nitrosothiols. Org. Lett. 2010, 12, 4208-4211.
18. Candeias, N. R.; Paterna, R.; Gois, P. M., Homologation Reaction of Ketones with Diazo Compounds. Chem. Rev. 2016, 116, 2937-2981.
19. (a) Creary, X., Tosylhydrazone Salt Pyrolyses: Phenyldiazomethanes. In Organic Syntheses, John Wiley & Sons, Inc.: 2003; (b) Lambert, J. B., Tetrahedron report number 273: The interaction of silicon with positively charged carbon. Tetrahedron. 1990, 46, 2677-2689; (c) Wierschke, S. G.; Chandrasekhar, J.; Jorgensen, W. L., Magnitude and origin of the .beta.-silicon effect on carbenium ions. J. Am. Chem. Soc. 1985, 107, 1496-1500.
20. Aggarwal, V. K.; de Vicente, J.; Bonnert, R. V., Catalytic Cyclopropanation of Alkenes Using Diazo Compounds Generated in Situ. A Novel Route to 2-Arylcyclopropylamines. Org. Lett. 2001, 3, 2785-2788.
21. Zhang, Z.; Wang, J., Recent studies on the reactions of α-diazocarbonyl compounds. Tetrahedron. 2008, 64, 6577-6605.
22. Marinozzi, M.; Pertusati, F.; Serpi, M., lambda(5)-Phosphorus-Containing alpha-Diazo Compounds: A Valuable Tool for Accessing Phosphorus-Functionalized Molecules. Chem. Rev. 2016, 116, 13991-14055.
23. Pramanik, M. M.; Chaturvedi, A. K.; Rastogi, N., Substituent controlled reactivity switch: selective synthesis of alpha-diazoalkylphosphonates or vinylphosphonates via nucleophilic substitution of alkyl bromides with Bestmann-Ohira reagent. Chem. Comm. 2014, 50, 12896-12898.
24. Seyferth, D.; Marmor, R. S., Dimethyl diazomethylphosphonate: its preparation and reactions. Tetrahedron Lett. 1970, 11, 2493-2496.
25. Colvin, E. W. H., B. J., A simple procedure for the elaboration of carbonyl compounds into homologous alkynes. J. Chem. Soc. Perkin Trans. 1. 1977, 0, 869-874.
26. Gilbert, J. C.; Weerasooriya, U., Elaboration of aldehydes and ketones to alkynes: improved methodology. J. Org. Chem. 1979, 44, 4997-4998.
27. Habrant, D.; Rauhala, V.; Koskinen, A. M., Conversion of carbonyl compounds to alkynes: general overview and recent developments. Chem. Soc. Rev. 2010, 39, 2007-2017.
28. Ohira, S., Methanolysis of Dimethyl (1-Diazo-2-oxopropyl) Phosphonate: Generation of Dimethyl (Diazomethyl) Phosphonate and Reaction with Carbonyl Compounds. Synth. Commun. 1989, 19, 561-564.
29. Pramanik, M. M. D.; Kant, R.; Rastogi, N., Synthesis of 3-carbonyl pyrazole-5-phosphonates via 1,3-dipolar cycloaddition of Bestmann–Ohira reagent with ynones. Tetrahedron. 2014, 70, 5214-5220.
30. Müller, S. L., B.; Roth, G. J.; Bestmann, H. J., An Improved One-pot Procedure for the Synthesis of Alkynes from Aldehydes. Synlett. 1996, 6, 521-522.
31. (a) Meshram, H. M.; Thakur, P. B.; Madhu Babu, B.; Bangade, V. M., A convenient, rapid, and general synthesis of α-oxo thiocyanates using clay supported ammonium thiocyanate. Tetrahedron Lett. 2012, 53, 1780-1785; (b) Prinsep, M. R., Sulfur-Containing Natural Products from Marine Invertebrates. Studies in Natural Products Chemistry, 2003, 28, 617-751.
32. Liu, P.; Li, C.; Zhang, J.; Xu, X., Facile and Versatile Synthesis of Alkyl and Aryl Isothiocyanates by Using Triphosgene and CoSolvent. Synth. Commun. 2013, 43, 3342-3351.
33. (a) Bound, D. J.; Bettadaiah, B. K.; Srinivas, P., Microwave-Assisted Synthesis of Alkyl Thiocyanates. Synth. Commun. 2013, 43, 1138-1144; (b) Aghapour, G.; Asgharzadeh, A., Chlorodiphenylphosphine as Highly Selective and Efficient Reagent for the Conversion of Alcohols, Tetrahydropyranyl and Silyl Ethers to Thiocyanates and Isothiocyanates. Phosphorus, Sulfur, and Silicon and the Related Elements. 2014, 189, 796-802; (c) Mokhtari, B.; Azadi, R.; Rahmani-Nezhad, S., In situ-generated N-thiocyanatosuccinimide (NTS) as a highly efficient reagent for the one-pot thiocyanation or isothiocyanation of alcohols. Tetrahedron Lett. 2009, 50, 6588-6589.
34. Renard, P. Y.; Schwebel, H.; Vayron, P.; Josien, L.; Valleix, A.; Mioskowski, C., Easy access to phosphonothioates. Chemistry. 2002, 8, 2910-2916.
35. Wong, R.; Dolman, S. J., Isothiocyanates from Tosyl Chloride Mediated Decomposition of in Situ Generated Dithiocarbamic Acid Salts. J. Org. Chem. 2007, 72, 3969-3971.
36. (a) Harusawa, S.; Shiori, T., New methods and reagents in organic synthesis, 23, diethyl phosphorocyanidate(DEPC): a useful reagent for an unprecedented transformation of sulfinic acids to thiocyanates. Tetrahedron Lett. 1982, 23, 447-448; (b) Wu, Y.-q.; Limburg, D. C.; Wilkinson, D. E.; Hamilton, G. S., 1-Cyanoimidazole as a Mild and Efficient Electrophilic Cyanating Agent. Org. Lett. 2000, 2, 795-797; (c) Wang, Z.-H.; Ji, X.-M.; Hu, M.-L.; Tang, R.-Y., Nitromethane as a cyanating reagent for the synthesis of thiocyanates. Tetrahedron Lett. 2015, 56, 5067-5070.
37. Jiang, N.; Wang, J., DBU-promoted condensation of acyldiazomethanes to aldehydes and imines under catalytic conditions. Tetrahedron Lett. 2002, 43, 1285-1287.
38. (a) Chaturvedi, A. K.; Kant, R.; Rastogi, N., Access to the Phosphorylindenopyrazole Scaffold via a Metal-Free Domino Reaction of Diazoalkylphosphonates with 3-Bromophthalides. J. Org. Chem. 2016, 81, 11291-11296; (b) Pramanik, M. M.; Rastogi, N., Synthesis of alpha-diazo-beta-keto esters, phosphonates and sulfones via acylbenzotriazole-mediated acylation of a diazomethyl anion. Org. Biomol. Chem. 2015, 13, 11567-11571.
39. Pramanik, M.; Chaturvedi, A.; Rastogi, N., Substituent controlled reactivity switch: selective synthesis of alpha-diazoalkylphosphonates or vinylphosphonates via nucleophilic substitution of alkyl bromides with Bestmann-Ohira reagent. Chem. Commun., 2014, 50, 12896-12898.
40. Hideyoshi, M.; Yuichi, N.; Mitsuru, S., Oxalic Acid-catalyzed Reaction of Alcohols with NaSCN: The Effects of Additives NaI and I2. Chem. Lett., 2006, 35, 1262-1263.
41. Azadi, R.; Mokhtari, B.; Makaremi, M.-A., Phosphine-free conversion of alcohols into alkyl thiocyanates using trichloroisocyanuric acid/NH4SCN. Chin. Chem. Lett., 2012, 23, 77-80.
42. Gilbert, J. C.; Weerasooriya, U., Diazoethenes: their attempted synthesis from aldehydes and aromatic ketones by way of the Horner-Emmons modification of the Wittig reaction. A facile synthesis of alkynes. J. Org. Chem., 1982, 47, 1837-1845.
43. Oriol, B.; Juhani, H.; Kari, R.; P., K. A. M., A Simple Organocatalytic Enantioselective Synthesis of Pregabalin. Eur. J. Org. Chem., 2009, 9, 1340-1351.
44. Vorona, S.; Artamonova, T.; Zevatskii, Y.; Myznikov, L., An Improved Protocol for the Preparation of 5-Substituted Tetrazoles from Organic Thiocyanates and Nitriles. Synthesis, 2014, 46, 781-786.
45. Wang, H.; Zhang, J.; Xian, M., Facile Formation of Dehydroalanine From S-Nitrosocysteines. J. Am. Chem. Soc., 2009, 131, 13238-13239.
46. Soulère, L.; Sturm, J.-C.; Núñez-Vergara, L. J.; Hoffmann, P.; Périé, J., Synthesis, electrochemical, and spectroscopic studies of novel S-nitrosothiols. Tetrahedron, 2001, 57, 7173-7180.
47. Koniev, O.; Leriche, G.; Nothisen, M.; Remy, J.-S.; Strub, J.-M.; Schaeffer-Reiss, C.; Van Dorsselaer, A.; Baati, R.; Wagner, A., Selective Irreversible Chemical Tagging of Cysteine with 3-Arylpropiolonitriles. Bioconjugate Chem., 2014, 25, 202-206.
48. Goddard-Borger, E. D.; Stick, R. V., An Efficient, Inexpensive, and Shelf-Stable Diazotransfer Reagent: Imidazole-1-sulfonyl Azide Hydrochloride. Org. Lett., 2007, 9, 3797-3800.
49. Boibessot, T.; Bénimèlis, D.; Jean, M.; Benfodda, Z.; Meffre, P., Synthesis of a Novel Rhizobitoxine-Like Triazole-Containing Amino Acid. Synlett. 2016, 27, 2685-2688.
50. Maehr, H.; Uskokovic, M. R.; Schaffner, C. P., Concise Synthesis of Dimethyl (2-Oxopropyl)phosphonate and Homologation of Aldehydes to Alkynes in a Tandem Process. Synth. Commun., 2008, 39, 299-310.
51. Girard, P.; Guillot, N.; Motherwell, W. B.; Hay-Motherwell, R. S.; Potier, P., The reaction of thionitrites with barton esters: a convenient free radical chain reaction for decarboxylative nitrosation. Tetrahedron, 1999, 55, 3573-3584.
52. Jiao, Y.; Jin‐Hong, L.; Ji‐Chang, X., Reaction of Thiocarbonyl Fluoride Generated from Difluorocarbene with Amines. Angew. Chem. Int. Ed., 2017, 56, 16669-16673.
53. A., D. G.; U., I. K.; Shuqiong, L.; Grzegorz, L.; Olga, M.; Peter, M.; T., T. T., Isomerization of Triphenylmethoxyl: The Wieland Free-Radical Rearrangement Revisited a Century Later. Angew. Chem. Int. Ed., 2010, 49, 5982-5985.
54. Suzuki, H.; Usuki, M.; Hanafusa, T., Photo-induced transformation of polyalkylbenzyl thiocyanates into polyalkylbenzyl isothiocyanates. A synthesis of some bis- and tris(isothiocyanatomethyl)polymethylbenzenes by multiple thiocyanate isomerization. Bull. Chem. Soc. Jpn., 1979, 52, 836-840.
55. Philip; Paul, D.; Shannon M.; Derek; Feng; Donna, L., Thiosulfinate antioxidants and methods of use thereof., WO2013/75253, 2013, A1
56. Wang, Z.-H.; Ji, X.-M.; Hu, M.-L.; Tang, R.-Y., Nitromethane as a cyanating reagent for the synthesis of thiocyanates. Tetrahedron Lett., 2015, 56, 5067-5070.
57. Tankam, T.; Poochampa, K.; Vilaivan, T.; Sukwattanasinitt, M.; Wacharasindhu, S., Organocatalytic visible light induced S-S bond formation for oxidative coupling of thiols to disulfides. Tetrahedron, 2016, 72, 788-793.
58. Karimi Zarchi, M. A.; Tabatabaei Bafghi, A., Synthesis of alkyl thiocyanates from alcohols using a polymer-supported thiocyanate ion promoted by cyanuric chloride/dimethylformamide. J. Sulfur Chem., 2015, 36, 403-412.
59. Dong, W.-L.; Huang, G.-Y.; Li, Z.-M.; Zhao, W.-G., A Convenient Method for the Aerobic Oxidation of Thiols to Disulfides. Phosphorus Sulfur Silicon Relat. Elem., 2009, 184, 2058-2065.
60. Forrester, J.; Jones, R. V. H.; Newton, L.; Preston, P. N., Synthesis and reactivity of benzylic sulfonium salts: benzylation of phenol and thiophenol under near-neutral conditions. Tetrahedron, 2001, 57, 2871-2884.
61. Kim, J.-J.; Kweon, D.-H.; Cho, S.-D.; Kim, H.-K.; Jung, E.-Y.; Lee, S.-G.; Falck, J. R.; Yoon, Y.-J., 2-Cyanopyridazin-3(2H)-ones: effective and chemoselective electrophilic cyanating agents. Tetrahedron, 2005, 61, 5889-5894.
62. Maurya, C. K.; Mazumder, A.; Kumar, A.; Gupta, P. K., Synthesis of Disulfanes from Organic Thiocyanates Mediated by Sodium in Silica Gel. Synlett., 2016, 27, 409-411.
63. Yadav, L. D. S.; Garima; Kapoor, R., One-Pot Reductive Sulfenylation and Thiocyanation of Carbonyl Compounds in Ionic Liquid Media. Synth. Commun., 2010, 41, 100-112.
64. Sinha, S.; Ilankumaran, P.; Chandrasekaran, S., One pot conversion of alcohols to disulfides mediated by benzyltriethylammonium tetrathiomolybdate. Tetrahedron, 1999, 55, 14769-14776.
65. Thompson, S.; Shaffer, J. E., S-nitroso-N-alkonoylpenicillamines., US5187305, 1993, A
66. Dai, X.; Miller, M. W.; Stamford, A. W., Formal Olefination and Acylaziridination of Imidazolones. Org. Lett., 2010, 12, 2718-2721.
67. Siodlak, D.; Grondys, J.; Broda, M. A., The conformational properties of alpha,beta-dehydroamino acids with a C-terminal ester group. J. Pept. Sci., 2011, 17, 690-699.
校內:2023-07-11公開