簡易檢索 / 詳目顯示

研究生: 方亭孋
Fang, Ting-Li
論文名稱: 以電化學插層法製備膨脹石墨及應用於柴油吸附之研究
Preparation of expanded graphite by electrochemical intercalation method for adsorption of diesel
指導教授: 陳盈良
Chen, Ying-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 189
中文關鍵詞: 凝析石墨電化學插層法微波法膨脹石墨吸附材料
外文關鍵詞: kish graphite, electrochemical method, microwave irradiation, expanded graphite, adsorbent
相關次數: 點閱:53下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在利用煉鋼副產物之高爐集塵灰,經處理後可獲得高純度碳含量之凝析石墨(kish graphite,KG),以電化學插層法將凝析石墨製得石墨插層化合物(graphite intercalation compound,GIC), 再藉由微波處理製備膨脹石墨(expanded graphite,EG),後續使用2 種市面常見柴油進行吸附試驗,測試膨脹石墨的吸附效能為符合資源再利用之理念,亦進行EG循環性試驗,並評估其循環再利用之能力。
    首先,透過粒徑分析了解石墨的粒徑分佈以及元素分析(element analysis,EA)測得凝析石墨之碳含量。接著於電化學插層實驗中設計一組電化學反應裝置進行,以不鏽鋼片作為反應電極,設置一端陽極、另外二端作為陰極,使用硫酸作為插層溶液,以電能取代氧化劑的功用來進行電化學插層反應,探討不同插層反應條件對膨脹體積之影響。最後歸納出凝析石墨在水洗量2000 mL、電流密度240 mA/cm2、硫酸濃度60 %、氧化插層時間15 min、微波功率700 W、微波時間20 s之實驗條件下,可獲得較佳膨脹體積185 mL/g。另外,分別針對304、316型號不鏽鋼電極進行電化學插層重複試驗,以評估在更換與不更換插層溶液之情形下,不同電極對膨脹體積、電極損失量及金屬離子累積釋出量之影響。由結果歸納出在更換溶液下,使用 316 不鏽鋼電極在膨脹體積、電極重量損失及金屬離子損失量的表現較佳,經10次電化學插層反應後仍維持在膨脹體積112 mL/g。
    在膨脹石墨吸附油品之試驗中,於超級柴油與甲種漁船燃料油環境下進行吸附,歸納出在吸附溫度30℃、吸附時間10 min的條件下,凝析石墨所製備之膨脹石墨吸附量分別為59.66與64.48 g/g,且皆已達到吸附平衡之97.5%以上。後續應用於脫附試驗中,以脫附溫度300℃、脫附時間15 min 可達到脫附率99.3%。於循環次數之試驗中,經5次吸脫附後,再生率仍維持於55%以上,顯示其具有可循環再利用之能力。
    綜合以上結果,由煉鋼集塵灰中所獲得之凝析石墨,可製備為膨脹石墨並應用於油污處理問題,成為一種具有替代天然石墨潛力之吸附材料,符合當前所提倡的資源再生利用和永續循環之理念。

    In this study, the kish graphite(KG) from blast furnace dust, a byproduct of steelmaking, was used to prepare graphite intercalation compound (GIC) via an electrochemical intercalation method, and expanded graphite (EG) was prepared by microwave irradiation. The adsorption test of EG was conducted by using two commonly available diesel types. Moreover, to align with the principles of resource reuse, the cyclic test was performed to assess its reusability and recycling potential. With the electrochemical intercalation experiment, a three-electrode system was constructed with stainless steel electrodes, which included an anode in the middle, two cathodes at both ends, and sulfuric acid was used as the intercalation solution. The largest expanded volume is 185 mL/g which was prepared under the parameters of water consumption = 2000 mL, current density = 240 mA/cm2, sulfuric acid concentration = 60 wt%, reaction time = 15 min, irradiation power = 700 W, irradiation time = 20 s. On the other hand, the repeated experiment indicated that with the replacement of the intercalation solution, the expanded volume remained stable at 112 mL/g with Type 316 stainless steel electrode, and its performance was better than Type 304. After adsorption, desorption, and cyclic tests, kish-expanded graphite(EG-K) achieved the maximum adsorption capacity of 64.48 g/g, a desorption rate of 99.3 % at 300℃ for 15 min, and the regeneration rate of EG-K remained above 55% after five cycles, which proved that EG-K is an adsorbent material with the potential for reuse.

    摘要 I 誌謝 XII 目錄 XIII 表目錄 XVI 圖目錄 XVII 第一章 前言 1 1-1 研究動機與目的 1 1-2 研究內容 2 第二章 文獻回顧 4 2-1 油污染物對環境影響與應對方式 4 2-1-1 油污染物對於環境的影響 4 2-1-2 油污染物常見處理方式 6 2-1-3 吸附機制與吸附材料種類 10 2-2 膨脹石墨之來源與製備方式 15 2-2-1 凝析石墨形成機制與富集純化 15 2-2-2 膨脹石墨之製備方式與特性 20 2-2-3 膨脹石墨之應用 24 2-3 電化學插層法 27 2-3-1 石墨插層化合物形成機制與製備方式 27 2-3-2 電化學插層法 33 2-3-3 電化學插層法之影響因素 35 2-4 小結 39 第三章 研究材料、設備和方法 40 3-1 研究架構與實驗流程 40 3-2 研究材料與設備 43 3-2-1 樣品前處理 43 3-2-2 實驗試藥與儀器設備 43 3-3 研究分析與方法 46 3-3-1 製備石墨插層化合物之參數設計及實驗流程 46 3-3-2 製備膨脹石墨之實驗參數設計與實驗程序 48 3-3-3 膨脹石墨吸附油品之實驗流程 48 3-3-4 膨脹石墨循環次數之實驗流程 49 3-3-5 分析方法 50 第四章 結果與討論 54 4-1 天然石墨製備膨脹石墨參數之探討 54 4-1-1 基本特性分析 54 4-1-2 氧化插層條件對膨脹體積之影響 55 4-1-3 膨脹石墨之性質分析與微觀結構之探討 65 4-1-4 小結 75 4-2 凝析石墨製備膨脹石墨參數之探討 77 4-2-1 氧化插層條件對EG-K膨脹體積之影響 77 4-2-2 膨脹石墨之性質分析與微觀結構之探討 85 4-2-3 小結 93 4-3 不鏽鋼電極重複試驗與插層溶液分析 95 4-3-1 更換插層溶液之影響 96 4-3-2 不更換插層溶液之影響 111 4-3-3 小結 126 4-4 膨脹石墨應用於吸附及脫附柴油之探討 128 4-4-1 膨脹石墨吸附柴油之探討 128 4-4-2 膨脹石墨脫附柴油之探討 137 4-4-3 膨脹石墨之循環次數試驗 143 4-4-4 小結 151 第五章 結論與建議 153 5-1 結論 153 5-2 建議 155 參考文獻 156

    1. Abdullah, S. R. S.; Al-Baldawi, I. A.; Almansoory, A. F.; Purwanti, I. F.; Al-Sbani, N. H.; Sharuddin, S. S. N. Plant-assisted remediation of hydrocarbons in water and soil: Application, mechanisms, challenges and opportunities. Chemosphere 2020, 247, 125932.
    2. Dadrasnia, A.; Shahsavari, N.; Emenike, C. Remediation of contaminated sites. Hydrocarbon 2013, 65.
    3. Beyer, J.; Trannum, H. C.; Bakke, T.; Hodson, P. V.; Collier, T. K. Environmental effects of the Deepwater Horizon oil spill: A review. Marine Pollution Bulletin 2016, 110 (1), 28-51.
    4. Khordagui, H.; Al-Ajmi, D. Environmental impact of the Gulf War: An integrated preliminary assessment. Environmental Management 1993, 17 (4), 557-562.
    5. Mishra, S.; Chauhan, G.; Verma, S.; Singh, U. The emergence of nanotechnology in mitigating petroleum oil spills. Marine Pollution Bulletin 2022, 178, 113609.
    6. Motta, F. L.; Stoyanov, S. R.; Soares, J. B. P. Application of solidifiers for oil spill containment: A review. Chemosphere 2018, 194, 837-846.
    7. Buskey, E. J.; White, H. K.; Esbaugh, A. J. Impact of oil spills on marine life in the Gulf of Mexico: effects on plankton, nekton, and deep-sea benthos. Oceanography 2016, 29 (3), 174-181.
    8. RoLing, W. F.; Milner, M. G.; Jones, D. M.; Lee, K.; Daniel, F.; Swannell, R. J.; Head, I. M. Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Applied and environmental microbiology 2002, 68 (11), 5537-5548.
    9. Mullin, J. V.; Champ, M. A. Introduction/Overview to In Situ Burning of Oil Spills. Spill Science & Technology Bulletin 2003, 8 (4), 323-330.
    10. Philp, J.; Atlas, R.; Cunningham, C. Bioremediation, Encyclopaedia of the Life Sciences. Nature Publishing Group, London: 2009.
    11. Ivshina, I. B.; Kuyukina, M. S.; Krivoruchko, A. V.; Elkin, A. A.; Makarov, S. O.; Cunningham, C. J.; Peshkur, T. A.; Atlas, R. M.; Philp, J. C. Oil spill problems and sustainable response strategies through new technologies. Environmental Science: Processes & Impacts 2015, 17 (7), 1201-1219, 10.1039/C5EM00070J.
    12. Olga, V. R.; Darina, V. I.; Alexandr, A. I.; Alexandra, А. O. Cleanup of Water Surface from Oil Spills Using Natural Sorbent Materials. Procedia Chemistry 2014, 10, 145-150.
    13. Annunciado, T. R.; Sydenstricker, T. H. D.; Amico, S. C. Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Marine Pollution Bulletin 2005, 50 (11), 1340-1346.
    14. Bandura, L.; Woszuk, A.; Kołodyńska, D.; Franus, W. Application of Mineral Sorbents for Removal of Petroleum Substances: A Review. Minerals 2017, 7 (3), 37.
    15. Li, M.; Yin, X.; Li, J. Robust superhydrophobic/superoleophilic sponge for efficient removal of oils from corrosive aqueous solutions. Journal of Adhesion Science and Technology 2019, 33 (13), 1426-1437.
    16. Warnock, A. M.; Hagen, S. C.; Passeri, D. L. Marine tar residues: a review. Water, Air, & Soil Pollution 2015, 226, 1-24.
    17. Oliveira, L. M. T. M.; Saleem, J.; Bazargan, A.; Duarte, J. L. d. S.; McKay, G.; Meili, L. Sorption as a rapidly response for oil spill accidents: A material and mechanistic approach. Journal of Hazardous Materials 2021, 407, 124842.
    18. Bazargan, A.; Tan, J.; McKay, G. Standardization of Oil Sorbent Performance Testing. Journal of Testing and Evaluation 2015, 43 (6), 12711278.
    19. Sabir, S. Approach of Cost-Effective Adsorbents for Oil Removal from Oily Water. Critical Reviews in Environmental Science and Technology 2015, 45 (17), 1916-1945.
    20. Doshi, B.; Sillanpää, M.; Kalliola, S. A review of bio-based materials for oil spill treatment. Water Research 2018, 135, 262-277.
    21. Adebajo, M. O.; Frost, R. L.; Kloprogge, J. T.; Carmody, O.; Kokot, S. Porous Materials for Oil Spill Cleanup: A Review of Synthesis and Absorbing Properties. Journal of Porous Materials 2003, 10 (3), 159-170.
    22. Tic, W. J.; Pijarowski, P. M. Characteristics of adsorbents used to remove petroleum contaminants from soil and wastewater. Przemysl Chemiczny 2015, 94 (3), 301-306.
    23. Likon, M.; Remškar, M.; Ducman, V.; Švegl, F. Populus seed fibers as a natural source for production of oil super absorbents. Journal of Environmental Management 2013, 114, 158-167.
    24. Sakthivel, T.; Reid, D. L.; Goldstein, I.; Hench, L.; Seal, S. Hydrophobic High Surface Area Zeolites Derived from Fly Ash for Oil Spill Remediation. Environmental Science & Technology 2013, 47 (11), 5843-5850.
    25. Lin, J.; Shang, Y.; Ding, B.; Yang, J.; Yu, J.; Al-Deyab, S. S. Nanoporous polystyrene fibers for oil spill cleanup. Marine Pollution Bulletin 2012, 64 (2), 347-352.
    26. Jiang, P.; Li, K.; Chen, X.; Dan, R.; Yu, Y. Magnetic and Hydrophobic Composite Polyurethane Sponge for Oil–Water Separation. Applied Sciences 2020, 10 (4), 1453.
    27. Meng, L.-Y.; Park, S.-J. Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications. Carbon letters 2014, 15 (2), 89-104.
    28. Nguyen, D. D.; Tai, N.-H.; Lee, S.-B.; Kuo, W.-S. Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy & environmental science 2012, 5 (7), 7908-7912.
    29. Harris, P. J. Carbon nanotube science: synthesis, properties and applications; Cambridge university press, 2009.
    30. Gui, X.; Zeng, Z.; Lin, Z.; Gan, Q.; Xiang, R.; Zhu, Y.; Cao, A.; Tang, Z. Magnetic and highly recyclable macroporous carbon nanotubes for spilled oil sorption and separation. ACS applied materials & interfaces 2013, 5 (12), 5845-5850.
    31. Oni, B. A.; Oziegbe, O.; Olawole, O. O. Significance of biochar application to the environment and economy. Annals of Agricultural Sciences 2019, 64 (2), 222-236.
    32. Yang, M.; Wang, J.; Chen, Y.; Gao, J. Biochar produced from cotton husks and its application for the adsorption of oil products. IOP Conference Series: Earth and Environmental Science 2020, 545 (1),012022.
    33. Saikam, L.; Arthi, P.; Senthil, B.; Shanmugam, M. A review on exfoliated graphite: Synthesis and applications. Inorganic Chemistry Communications 2023, 152, 110685.
    34. Hristea, G.; Budrugeac, P. Characterization of exfoliated graphite for heavy oil sorption. Journal of thermal analysis and calorimetry 2008, 91, 817 823.
    35. Toyoda, M.; Inagaki, M. Heavy oil sorption using exfoliated graphite: New application of exfoliated graphite to protect heavy oil pollution. Carbon 2000, 38 (2), 199-210.
    36. Liu, S.; Loper, C. R. Kish, a source of crystalline graphite. Carbon 1991, 29 (8), 1119-1124.
    37. 陳俊廷. 含石墨亮片物質特性分析及資源化之評估. 國立屏東科技大學, 屏東縣, 2007.
    38. Gredelj, S.; Zanin, M.; Grano, S. R. Selective flotation of carbon in the Pb–Zn carbonaceous sulphide ores of Century Mine, Zinifex. Minerals Engineering 2009, 22 (3), 279-288.
    39. Bulatovic, S. Beneficiation of graphite ore. Handbook of Flotation Reagents: Chemistry, Theory and Practice; Elsevier: Amsterdam, The Netherlands 2015, 3, 163-171.
    40. Frost, R. The recovery of kish graphite from secondary sources. University of Birmingham, 2015.
    41. Lin, S.; Chai, X.; Zhang, H.; Zhou, S.; Meng, X. The effect of calcium hypochlorite on the adsorption of diethyldithiocarbamate (DDTC) on the surface of molybdenite and bismuthinite. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023, 676, 132270.
    42. Chen, Y.-L.; Chiang, W.-P.; Hsieh, P.-Y. Recovery of Kish Graphite from Steelmaking Byproducts with a Multi-Stage Froth Flotation Process. Recycling 2023, 8 (6), 92.
    43. Chehreh Chelgani, S.; Rudolph, M.; Kratzsch, R.; Sandmann, D.; Gutzmer, J. A Review of Graphite Beneficiation Techniques. Mineral Processing and Extractive Metallurgy Review 2016, 37 (1), 58-68.
    44. Dresselhaus, M. S.; Dresselhaus, G. Intercalation compounds of graphite. Advances in Physics 1981, 30 (2), 139-326.
    45. He, J.; Yuan, M.; Ren, H.; Song, T.; Zhang, Y. The electrochemical preparation and characterization of sulfur-free expanded graphite. Journal of Chemical Sciences 2023, 135 (1), 17.
    46. Yakovlev, A.; Finaenov, A.; Zabud’Kov, S.; Yakovleva, E. Thermally expanded graphite: Synthesis, properties, and prospects for use. Russian journal of applied chemistry 2006, 79, 1741-1751.
    47. Mazela, B.; Batista, A.; Grześkowiak, W. Expandable Graphite as a Fire Retardant for Cellulosic Materials—A Review. Forests 2020, 11 (7), 755.
    48. Tryba, B.; Morawski, A. W.; Inagaki, M. Preparation of exfoliated graphite by microwave irradiation. Carbon 2005, 43 (11), 2417-2419.
    49. Sykam, N.; Kar, K. K. Rapid synthesis of exfoliated graphite by microwave irradiation and oil sorption studies. Materials Letters 2014, 117, 150-152.
    50. Hou, J.; Gao, X.; Yang, Z.; Qin, J.; Li, Y.; Li, B. Microwave-Assisted Preparation of Zirconium Intercalated Expanded Graphite for Chlorpyrifos Determination in Honey. Chromatographia 2021, 84 (2),117-125.
    51. Zhao, Q.; Cheng, X.; Wu, J.; Yu, X. Sulfur-free exfoliated graphite with large exfoliated volume: Preparation, characterization and its adsorption performance. Journal of Industrial and Engineering Chemistry 2014, 20 (6), 4028-4032.
    52. Hung, W.-C.; Wu, K.-H.; Lyu, D.-Y.; Cheng, K.-F.; Huang, W.-C. Preparation and characterization of expanded graphite/metal oxides for antimicrobial application. Materials Science and Engineering: C 2017, 75, 1019-1025.
    53. Liu, T.; Zhang, R.; Zhang, X.; Liu, K.; Liu, Y.; Yan, P. One-step roomtemperature preparation of expanded graphite. Carbon 2017, 119, 544-547.
    54. He, S.; Wang, S.; Chen, H.; Hou, X.; Shao, Z. A new dual-ion hybrid energy storage system with energy density comparable to that of ternary lithium ion batteries. Journal of Materials Chemistry A 2020, 8 (5), 25712580.
    55. Celzard, A.; Marêché, J. F.; Furdin, G. Modelling of exfoliated graphite. Progress in Materials Science 2005, 50 (1), 93-179.
    56. Tuan Nguyen, H. D.; Nguyen, H. T.; Nguyen, T. T.; Le Thi, A. K.; Nguyen, T. D.; Phuong Bui, Q. T.; Bach, L. G. The Preparation and Characterization of MnFe2O4-Decorated Expanded Graphite for Removal of Heavy Oils from Water. Materials 2019, 12 (12), 1913.
    57. Saikam, L.; Arthi, P.; Jayram, N. D.; Sykam, N. Rapid removal of organic dyes from aqueous solutions using mesoporous exfoliated graphite. Diamond and Related Materials 2022, 130, 109480.
    58. Hofmann, U.; Rüdorff, W. The formation of salts from graphite by strong acids. Transactions of the Faraday Society 1938, 34, 1017-1021.
    59. Noel, M.; Santhanam, R. Electrochemistry of graphite intercalation compounds. Journal of Power Sources 1998, 72 (1), 53-65.
    60. Dresselhaus, M. S.; Dresselhaus, G. Intercalation compounds of graphite. Advances in physics 2002, 51 (1), 1-186.
    61. Lee, D. W.; De Los Santos V, L.; Seo, J. W.; Felix, L. L.; Bustamante D, A.; Cole, J. M.; Barnes, C. H. W. The Structure of Graphite Oxide: Investigation of Its Surface Chemical Groups. The Journal of Physical Chemistry B 2010, 114 (17), 5723-5728.
    62. Hagiwara, R.; Sato, Y. 12 - Structures of Highly Fluorinated Compounds of Layered Carbon. In New Fluorinated Carbons: Fundamentals and Applications, Boltalina, O. V., Nakajima, T. Eds.; Elsevier, 2017; pp 283-303.
    63. Daumas, N.; Herold, A. Relations between phase concept and reaction mechanics in graphite insertion compounds. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie C 1969, 268 (5), 373-&.
    64. Chung, D. D. L. A review of exfoliated graphite. Journal of Materials Science 2016, 51 (1), 554-568.
    65. Jihui, L.; Huifang, D.; Qian, L.; Shufen, L. Preparation of sulfur-free expanded graphite with 320 μm mesh of flake graphite. Materials Letters 2006, 60 (29), 3927-3930.
    66. Asghar, H. M. A.; Hussain, S. N.; Sattar, H.; Brown, N. W.; Roberts, E. P. L. Environmentally friendly preparation of exfoliated graphite. Journal of Industrial and Engineering Chemistry 2014, 20 (4), 1936-1941.
    67. Coetzee, D.; Militký, J.; Wiener, J.; Venkataraman, M. Comparison of the Synthesis, Properties, and Applications of Graphite, Graphene, and Expanded Graphite. In Advanced Multifunctional Materials from Fibrous Structures, Militký, J., Venkataraman, M. Eds.; Springer Nature Singapore, 2023; pp 7187.
    68. Parvez, K.; Wu, Z.-S.; Li, R.; Liu, X.; Graf, R.; Feng, X.; Müllen, K. Exfoliation of Graphite into Graphene in Aqueous Solutions of Inorganic Salts. Journal of the American Chemical Society 2014, 136 (16), 6083-6091.
    69. Gurzęda, B.; Florczak, P.; Kempiński, M.; Peplińska, B.; Krawczyk, P.; Jurga, S. Synthesis of graphite oxide by electrochemical oxidation in aqueous perchloric acid. Carbon 2016, 100, 540-545.
    70. Kumar, N.; Srivastava, V. C. Simple Synthesis of Large Graphene Oxide Sheets via Electrochemical Method Coupled with Oxidation Process. ACS Omega 2018, 3 (8), 10233-10242.
    71. Kang, F.; Zhang, T. Y.; Leng, Y. Electrochemical behavior of graphite in electrolyte of sulfuric and acetic acid. Carbon 1997, 35 (8), 1167-1173.
    72. Toyoda, M.; Ohuchi, Y.; Wada, T.; Kinumoto, T.; Tsumura, T. Synthesis of novel acceptor–type graphite intercalation compounds using an electrochemical process. Journal of Physics and Chemistry of Solids 2012, 73 (12), 1414-1416.
    73. Liu, W.-W.; Aziz, A. Review on the Effects of Electrochemical Exfoliation Parameters on the Yield of Graphene Oxide. ACS Omega 2022, 7 (38), 33719-33731.
    74. 孫景丹; 杜新偉; 金燚翥. 影響電化學法製備膨脹石墨的因素. 炭素 2022, (03), 15-20.
    75. Kang, F.; Zhang, T.-Y.; Leng, Y. Electrochemical synthesis of sulfate graphite intercalation compounds with different electrolyte concentrations. Journal of Physics and Chemistry of Solids 1996, 57 (6), 883-888.
    76. 楊永清; 王佳德; 陳二龍. 可膨脹石墨電化學法製備及其研究. 纖維複合材料 1998, 15 (2), 22-23.
    77. 劉定福; 梁基照; 戈明亮. 高倍率無硫低溫可膨脹石墨的電化學法製備. 華南理工大學學報: 自然科學版 2014, 42 (10), 50-56.
    78. 連錦明; 童慶松; 鄭曦; 胡光輝. 電解氧化法製備膨脹石墨. 福建師範大學學報: 自然科學版 2000, 16 (3), 43-45.
    79. Kang, F.; Zheng, Y.-P.; Wang, H.-N.; Nishi, Y.; Inagaki, M. Effect of preparation conditions on the characteristics of exfoliated graphite. Carbon 2002, 40 (9), 1575-1581.
    80. 蕭鎮豪. (NH4)2S2O8-H2SO4系統下製備膨脹石墨並應用於柴油吸附之研究. 國立成功大學, 台南市, 2021.
    81. Naderi, M. Chapter Fourteen - Surface Area: Brunauer–Emmett–Teller (BET). In Progress in Filtration and Separation, Tarleton, S. Ed.; Academic Press, 2015; pp 585-608.
    82. Ţucureanu, V.; Matei, A.; Avram, A. M. FTIR Spectroscopy for Carbon Family Study. Critical Reviews in Analytical Chemistry 2016, 46 (6), 502520.
    83. Ramer, G.; Lendl, B. Attenuated Total Reflection F ourier Transform Infrared Spectroscopy. Encyclopedia of analytical chemistry: applications, theory and instrumentation 2006.
    84. Bird, M.; Keitel, C.; Meredith, W. Analysis of biochars for C, H, N, O and S by elemental analyser. Biochar: A guide to analytical methods 2017, 39.
    85. Mohammed, A.; Abdullah, A. Scanning electron microscopy (SEM): A review. In Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania, 2018; Vol. 2018, pp 79.
    86. Zhou, W.; Apkarian, R.; Wang, Z. L.; Joy, D. Fundamentals of scanning electron microscopy (SEM). Scanning microscopy for nanotechnology: techniques and applications 2007, 1-40.
    87. Hodoroaba, V.-D.; Procop, M. A Method to test the performance of an energy-dispersive X-ray spectrometer (EDS). Microscopy and microanalysis 2014, 20 (5), 1556-1564.
    88. Douvris, C.; Vaughan, T.; Bussan, D.; Bartzas, G.; Thomas, R. How ICPOES changed the face of trace element analysis: Review of the global application landscape. Science of The Total Environment 2023, 905, 167242.
    89. Cao, J.; He, P.; Mohammed, M. A.; Zhao, X.; Young, R. J.; Derby, B.; Kinloch, I. A.; Dryfe, R. A. W. Two-Step Electrochemical Intercalation and Oxidation of Graphite for the Mass Production of Graphene Oxide. Journal of the American Chemical Society 2017, 139 (48), 17446-17456.
    90. 于仁光; 喬小晶; 劉偉華; 苗豔玲. 影響電化學法製備的膨脹石墨的膨脹容積因素研究. 精細石油化工進展 2003, 4 (10), 8-10.
    91. Chang, D. W.; Lee, E. K.; Park, E. Y.; Yu, H.; Choi, H.-J.; Jeon, I.-Y.; Sohn, G.-J.; Shin, D.; Park, N.; Oh, J. H.; et al. Nitrogen-Doped Graphene
    Nanoplatelets from Simple Solution Edge-Functionalization for n-Type Field Effect Transistors. Journal of the American Chemical Society 2013, 135 (24), 8981-8988.
    92. Hampton, C.; Demoin, D.; Glaser, R. E. Vibrational spectroscopy tutorial: sulfur and phosphorus. University of missouri, fall 2010.
    93. Wang, Z.; Yu, C.; Huang, H.; Guo, W.; Yu, J.; Qiu, J. Carbon-enabled microwave chemistry: From interaction mechanisms to nanomaterial manufacturing. Nano Energy 2021, 85, 106027.
    94. Javidi, M.; Karimi Abadeh, H.; Yazdanpanah, H. R.; Namazi, F.; Shirvani Shiri, N. Synergistic effect of temperature, concentration and solution flow on corrosion and passive film of austenitic SS 304L and 316L in concentrated sulfuric acid. Corrosion Science 2024, 237, 112306.
    95. Abdelfatah, A.; Raslan, A.; Mohamed, L. Z. Corrosion characteristics of 304 stainless steel in sodium chloride and sulfuric acid solutions.International Journal of Electrochemical Science 2022, 17 (4), 220417.
    96. Pardo, A.; Merino, M. C.; Coy, A. E.; Viejo, F.; Arrabal, R.; Matykina, E. Effect of Mo and Mn additions on the corrosion behaviour of AISI 304 and 316 stainless steels in H2SO4. Corrosion Science 2008, 50 (3), 780-794.
    97. Li, J.; Liu, R.; Ma, L.; Wei, L.; Cao, L.; Shen, W.; Kang, F.; Huang, Z.-H. Combining Multiple Methods for Recycling of Kish Graphite from Steelmaking Slags and Oil Sorption Performance of Kish-Based Expanded Graphite. ACS Omega 2021, 6 (14), 9868-9875.
    98. Zhao, C.; Dong, Y.; Feng, Y.; Li, Y.; Dong, Y. Thermal desorption for remediation of contaminated soil: A review. Chemosphere 2019, 221, 841855.
    99. 台灣中油股份有限公司. 汽、柴、燃油安全資料表(SDS). 2023.
    100. Baker, R. S.; Kuhlman, M. A description of the mechanisms of in-situ thermal destruction (ISTD) reactions. In Current Practices in Oxidation and Reduction Technologies for Soil and Groundwater, and presented at the 2nd International Conf. on Oxidation and Reduction Technologies for Soil and Groundwater, ORTs-2, Toronto, Ontario, Canada, 2002.

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE