簡易檢索 / 詳目顯示

研究生: 詹琍尹
Chan, Li-Yin
論文名稱: 非韌性鋼筋混凝土結構受近斷層地震力之三維有限元素非線性分析
Nonlinear Finite Element 3D Analysis of Non-ductile RC Structures Subjected to Near-fault Ground Motions
指導教授: 胡宣德
Hu, Hsuan-Teh
共同指導教授: 蕭輔沛
Hsiao, Fu-Pei
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 125
中文關鍵詞: 有限元素法近斷層地震力分析非韌性配筋ABAQUS
外文關鍵詞: Finite element method, Near-fault seismic analysis, Non-ductile reinforcement, ABAQUS
相關次數: 點閱:160下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鑒於近年來例如921集集地震、2016年美濃地震所造成的震害發現,台灣住商混合類型建築物易因軟弱層效應而發生嚴重破壞甚至倒塌,加上台灣地區活動斷層甚多,其中以具高速度脈衝、地表大位移等特性的近斷層地震更具威脅性。故專家學者們致力於近斷層建築物抗倒塌之分析模擬與耐震補強技術,透過振動台大型實驗對試體最終破壞進行結構性檢討,搭配電腦軟體建立數值模型,期望能提供評估與補強技術給國內工程師參考。
    本論文根據國家地震工程研究中心(NCREE)所進行的一系列構件反覆載重實驗及三軸向振動台試驗,並強調台灣既有非韌性配筋建物之特性,使用有限元素軟體Abaqus分別採取靜力與動力分析,其中針對如何建立適當的網格元素與模型以有效模擬其勁度、強度、破壞模式及非線性行為等詳加研討,希望可改善目前國內耐震設計規範之缺失,並促進既有RC建物補強工法的研發,最後統整模擬獲得的動態行為與相關資料,探討建築物及相關構件行為之分析技術與實務需求,供後續地震工程科技對於鋼筋混凝土結構物受震反應之研究使用。

    In view of recent earthquakes including the 1999 Chi-Chi earthquake and the 2016 Meinung earthquake, it shows that the old existing RC frame structures in Taiwan are susceptible to severe damage or even collapsed due to the weak layer effect. Also, the effects of a near-fault ground moions ofen contain a long period velocity pulse and permanent ground displacement. Therefore, experts and scholars are committed to the analysis of the non-ductile RC buildings subjectd to near-fault ground motions. With the large-scale specimens of the shaking table experiments and the numerical model established by computer software, it is expected to provide a wealth of information to engineers.
    This paper is based on a series of component cylic loading tests and triaxial shaking table tests at the National Center for Research on Earthquake Engineering (NCREE), and evaluates seismic performance of deficiencies of non-ductile reinforced concrete structures in Taiwan. The finite element model will be done using the software ABAQUS, and focus on how to mesh appropriate elements to simulate the stiffness, strength, failure and nonlinear behavior of the model. It is hoped to improve the lack of current seismic design codes and promote the developing of existing RC building methods. Finally, all the relevant data of my paper, including the material properties and the dynamic behaviors obtained by the simulation, are provided for the research on seismic behavior of reinforced concrete structures in the future.

    摘要 I 致謝 V 目錄 VI 表目錄 XI 圖目錄 XIII 第一章 緒論1 1. 1 研究動機1 1. 2 研究目的2 1. 3 內容與架構2 1. 4 研究流程3 第二章 有限元素分析4 2. 1 ABAQUS混凝土材料模型4 2. 1. 1 Concrete Damaged Plastic Model (CDP) 4 2. 1. 2 CDP塑性行為5 2.1.2.1 降伏準則6 2.1.2.2 流動勢 (Flow potential)7 2. 1. 3 拉應力應變及損傷行為8 2. 1. 4 壓應力應變及損傷行為9 2. 2 鋼筋材料模型11 2. 3 有限元素法12 2. 3. 1 元素種類13 2.3.1.1 實體元素 (Solid elements)13 2.3.1.2 桁架元素 (Truss elements)14 2. 3. 2 分析方法15 2.3.2.1 靜態非線性分析15 2.3.2.2 動態分析15 第三章 構件側推分析17 3. 1 試驗介紹17 3. 1. 1 構件試體17 3. 1. 2 試驗流程22 3.1.2.1 柱試體22 3.1.2.2 梁柱接頭試體24 3. 1. 3 試驗結果26 3.1.3.1 柱試體26 3.1.3.2 梁柱接頭試體27 3. 2 鋼筋混凝土構件模型29 3. 2. 1 模型介紹29 3.2.1.1 柱模型29 3.2.1.2 梁柱接頭模型29 3. 2. 2 模型尺寸30 3. 2. 3 材料性質31 3.2.3.1 鋼筋31 3.2.3.2 混凝土32 3. 2. 4 邊界條件與接觸條件36 3.2.4.1 柱模型36 3.2.4.2 梁柱接頭模型37 3. 2. 5 使用元素與網格劃分38 3. 3 數值結果與試驗比較43 3. 3. 1 柱模型分析結果43 3. 3. 2 梁柱接頭模型分析結果45 第四章 三層樓RC構架受震反應分析49 4. 1 試驗介紹49 4. 1. 1 三層樓試體介紹49 4. 1. 2 地震歷時53 4. 1. 3 試驗結果55 4. 2 三層樓鋼筋混凝土模型62 4. 2. 1 模型介紹62 4. 2. 2 模型尺寸62 4. 2. 3 材料性質64 4.2.3.1 模態分析65 4.2.3.2 混凝土68 4.2.3.3 鋼筋70 4. 2. 4 邊界條件71 4. 2. 5 接觸條件75 4. 2. 6 使用元素與網格劃分75 4. 3 數值結果與試驗比較76 4. 3. 1 彈性分析76 4. 3. 2 塑性分析81 第五章 七層樓RC構架受震反應分析86 5. 1 試驗介紹86 5. 1. 1 七層樓試體介紹86 5. 1. 2 地震歷時88 5. 1. 3 試驗結果89 5. 2 七層樓鋼筋混凝土模型96 5. 2. 1 模型介紹96 5. 2. 2 模型尺寸96 5. 2. 3 模態分析99 5. 2. 4 邊界條件101 5. 2. 5 接觸條件101 5. 2. 6 使用元素與網格劃分102 5. 3 數值結果與試驗比較103 5. 3. 1 彈性分析103 5. 3. 2 塑性分析109 5.3.2.1 非彈性階段400 Gal 109 5.3.2.2 非彈性階段600 Gal 116 5.3.2.3 倒塌階段800 Gal 118 第六章 結論與建議120 6. 1 結論120 6. 2 建議121 參考文獻122

    [1]Abaqus. (2018). Abaqus analysis user's manual Vol. 3 Materials. Dassault Systèmes Simulia.
    [2]Abaqus theory manual. (2007). Dassault Systèmes Simulia.
    [3]ACI318-14. (2014). Building Code Requirement for Structural Concrete (ACI 318-2014) and Commentary (318R-2014). Mich: American Concrete Institute, Farmington Hills.
    [4]Aktas, M., Sumer, Y. (2014). Nonlinear finite element analysis of damaged and strengthened reinforced concrete beams. Journal of Civil Engineering and Management, 2(20),201-210.
    [5]Alfarah, B., López-Almansa, F., Oller, S. (2017). New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures. Engineering Structures, 132, 70-86.
    [6]ASCE. (1982). State of the art report on finite element analysis of reinforced concrete. New York: Task committee on concrete and masonry structures.
    [7]Birtel, V., Mark, P., Bochum, R. (2006). Parameterised finite element modeling of RC beam shear failure. Ruhr university institure for reinforced and prestessed concrete stuctures.
    [8]Bitiusca, L.-F. (2016). Finite Element Modelling of Reinforced Concrete Frame.
    [9]Brady, A. G. (1966). Studies of response to earthquake ground motion. Earthquake Eng. Res. Lab., Calif Inst. of Tech., Pasadena.
    [10]Chaudhari, S. V., Chakrabarti, M. A. (2012). Modeling of concrete for nonlinear analysis using finite element code Abaqus. International Journal of Computer Applications, 44(7), 14-18.
    [11]Chen, X., Duan, J., Li, Y. (2015). Mass proportional damping in nonlinear time-history analysis. China state construction technical center, Beijing.
    [12]Cicekli, U. et al (2007). A plasticity and anisotropic damage model for plain concrete. International Journal of Plasticity, 23(10-11), 1874-1900.
    [13]Elwi, A. A., D. W. Murray. (1979). A 3D hypoelastic concrete constitutive relationship. Journal of the Engineering Mechanics Division, 105(4), 623-641.
    [14]F. Faleschini, P. Bragolusi, M. A. Zanini, P. Zampier, C. Pellegrino. (2017). Experimental and numerical investigation on the cyclic behavior of RC beam column joints with EAF slag concrete. Engineering Structures, 152(2017), 335-347.
    [15]Hu, H.-T., Schnobrich, W. C. (1990). Nonlinear analysis of cracked reinforced concrete. ACI Structural Journal, 87(2), 199-207.
    [16]Jankowiak, T., Lodygowski, T. (2005). Identification of parameters of concrete damage plasticity constitutive model. Foundations of civil and environmental engineering, 6, 53-69.
    [17]Kmiecik, P., Kamiński, M. (2011). Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration. Archives of civil and mechanical engineering, 11(3), 623-636.
    [18]Lee, J., Fenves, G. L. (1998). Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics, 124(8), 892-900.
    [19]Lisha, G. S. (2018). Finite element 3D modeling of reinforced concrete structures subject to earthquake loading. Tainan: National Cheng Kung University.
    [20]Lubliner, J. J., Oliver, S. O., Oñate, E. (1989). A plastic-damage model for concrete. International Journal of Solids and Structures, 25(3), 229-326.
    [21]Najafgholipour, M. A., Dehghan, S. M., Dooshabi, Amin, Niroomandi, Arsalan. (2017). Finite Element Analysis of Reinforced Concrete Beam-Column Connections with Governing Joint Shear Failure Mode. Latin American Journal of Solids and Structures, 14(7), 1200-1225.
    [22]Oller, S. (2014). Nonlinear Dynamics of Structures. International Center for Numerical Methods in Engineering, Technical University of Catalonia.
    [23]Pascu. (2008). Behavior and computation of reinforced concrete elements. Technical University of Civil Engineering.
    [24]Pita, P. (2018). Studies on behavior of non-ductile reinforced concrete columns and beam-column joints subjected to cyclic loading. Tainan: National Cheng Kung University.
    [25]Saenz, L. (1964). "Equation for the stress-strain curve of concrete" by Desayi P, and Krishnan S. ACI Structural Journal, 61(9), 1229-1235.
    [26]Shambhu P. D., Indrajit, C. Computation of Rayleigh Damping Coefficients for Large Systems. Indian Institute of Technology Kharagpur, India.
    [27]Wahalathantri, B. L., Thambiratnam, D. P., Chan, T. H. T., Fwzia, S. (2011). A material model for flexural crack simulation in reinforced concrete elements using ABAQUS. Proceedings of the First International Conference on Engineering, Designing the built Environment for sustainable Wellbeing, 260-264.
    [28]Walkup, S. (1998). Rehabilitation of non-ductile reinforced concrete building columns using fiber reinforced polymer jackets. Pennsylvania: Lehigh University.
    [29]Yusuf, S., Muharrem, A. (2015). Defining parameters for concrete damage plasticity model. Challenge Journal of Structural Mechanics, 1(3), 149-155.
    [30]Yu, T., Teng, J., Wong, Y. L., Dong, S. L. (2010). Finite element modeling of confined concrete- I: Drucker-Prager type plasticity model. Engineering structures, 32, 665-679.
    [31]陸景文、詹穎雯、陳振川(2010),台灣地區混凝土抗壓強度與彈性模數特性研究,中國土木水利工程學刊,14,371-379。
    [32]中華民國內政部營建署(2019),混凝土結構設計規範。
    [33]樊长林、史志强(2012),基于地震塑性损伤的混凝土框架结构分析模型研究,工业建筑,42,63-66。
    [34]张 劲、王庆扬、胡守营、王传甲(2008),ABAQUS 混凝土损伤塑性模型参数验证,建筑结构,38,127-130。
    [35]李志山、曹胜涛、刘春明、杨志勇(2015),Rayleigh阻尼和振型阻尼在大规模建筑结构显式动力分析的实现及应用,土木建筑工程信息技术,7,91-95。

    無法下載圖示 校內:2024-08-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE