簡易檢索 / 詳目顯示

研究生: 洪惠全
Hung, Hui-Chuan
論文名稱: 半導體光子晶體光電性質之研究
Studies of Photonic Properties in Semiconductor-Dielectric Photonic Crystals
指導教授: 張守進
Chang, Shoou-Jinn
共同指導教授: 吳謙讓
Wu, Chien-Jang
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 172
中文關鍵詞: 光子晶體半導-介電光子晶體金屬-介電-半導光子晶體光子能隙光子量子井光子異質結構多通道濾波器
外文關鍵詞: photonic crystal, semiconductor-dielectric PC, metal-dielectric-semiconductor PC, photonic band gap, photonic quantum well, photonic crystal heterostructure, multichannel filter
相關次數: 點閱:81下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對含有摻雜半導體的半導-介電光子晶體(SDPC)作理論性的研究。在半導-介電光子晶體,介電係數和半導體內的載子密度有強相關,可以藉由摻雜的雜質的濃度來調整介電係數由正值到負值,這會造成折射系數由實數變化到複數。
    在主介電-介電光子晶體裡插入一層有摻雜的半導體的缺陷,會在主光子晶體的光子能帶隙裡產生共振穿透尖峰,並且可由摻雜濃度調整尖峰位置。此外經由增加缺陷厚度,可以得到多支共振穿透尖峰,用以製造多通道濾波器。
    此可調式多通道濾波器可經由其他 SDPC 結構組成,如用摻有雜質的半導體所組成的光子量子井中,可以產生比量子井層數多一的多通道濾波器;或高摻雜濃度的光子異質結構, 也可以在半導體的負介電常數區得到多通道濾波器。
    溫度也被討論到如何調整共振尖峰的位置,稱為溫度調整,是利用純質半導體的載子濃度是溫度函數達成,但是同時也要加入與溫度相關的衰減係數,因為在較高溫時它會衰減穿透率。
    最後在 SDPC 內加入一層超薄金屬,並討論此三層結構的MDSPC,經由增加超薄金屬厚度來擴增光子能隙的能力。

    This dissertation is theoretically devoted to the studies of photonic properties in the semiconductor-dielectric photonic crystal (SDPC) containing a doped semiconductor.
    In SDPC, the permittivity of semiconductor is strongly relative to the density of free carrier and can be manipulated by the concentration of impurity from positive permittivity, low impurity doping, to negative permittivity, heavy impurity doping. This leads the refractive index varies from real-value to complex-value.
    With a defect of the doped semiconductor inserted in a host dielectric-dielectric photonic crystal (DDPC) as the defect layer generates resonant transmission peak, and can be tuned by varying the doping concentration inside the photonic band gap (PBG) of host PC. Additionally, by increasing the defect thickness, it is also possible to have multiple resonant peaks, leading to a multichannel filter.
    The tunable multichannel filter can also be constructed by different structure of SDPC, ex, photonic quantum well (PQW) with extrinsic semiconductor as a defect layer can generate multichannel filter equal to number of defect layers plus one, photonic crystal heterostructure (PCH) and strongly extrinsic semiconductor can generate multichannel in the region where the permittivity of extrinsic semiconductor is negative.
    Temperature is also discussed to tune the location of resonant peak, called the T-tuning, due to the carrier density in intrinsic semiconductor is the function of temperature but the effect of damping factor should be included as it is a function of temperature and it decays the transmittance at higher temperature.
    Finally, the ternary metal-dielectric-semiconductor (MDS) PC with adding an ultrathin metal layer into dielectric-semiconductor photonic crystal (DS PC) is discussed its ability to enhance the photonic band gap (PBG) through increasing the thickness of the ultrathin metal layer.

    Abstract (In Chinese) I Abstract (In English) III Acknowledgement V Contents VI Figure Captions IX Table Captions……………………………………………..………..XVI Chapter 1 Introduction 1 1.1 Brief Introduction to Photonic Crystals 1 Chapter 2 Theoretical Methods 6 2.1 Reflection and Refraction of Plane Waves 6 2.2 2 x 2 Matrix Formulation 11 2.3 Optics of Periodic Layered Media 18 2.4 Bloch Waves and Band Structure 25 Chapter 3 A Mid-infrared Tunable Filter In a Semiconductor-dielectric Photonic Crystal Containing Doped Semiconductor Defect 36 3.1 Introduction 36 3.2 Basic Equations 39 3.3 Numerical Results and Discussion 42 3.4 Conclusion 47 Chapter 4 Analysis of Tunable Multiple-filteringProperty In a Photonic Crystal Containing Strongly Extrinsic Semiconductor 54 4.1 Introduction 54 4.2 Basic Equations 57 4.3 Numerical Results and Discussion 60 4.4 Conclusion 64 Chapter 5 Terahertz Temperature-dependent Defect Mode In a Semiconductor-dielectric Photonic Crystal 72 5.1 Introduction 72 5.2 Basic Equations 76 5.3 Numerical Results and Discussion 79 5.4 Conclusion 86 Chapter 6 Enhancement of Near-infrared Photonic Band Gap In a Ternary Metal-dielectric-semiconductor Photonic Crystal 96 6.1 Introduction 96 6.2 Basic Equations 98 6.3 Numerical Results and Discussion 102 6.4 Conclusion 104 Chapter 7 Tunable Multichannel Filter in a Photonic Crystal Containing Semiconductor Photonic Quantum Well 110 7.1 Introduction 110 7.2 Basic Equations 113 7.3 Numerical Results and Discussion 116 7.4 Conclusion 119 Chapter 8 An Infrared Tunable Multichannel Filter in a Doped Semiconductor-Dielectric Photonic Crystal Heterostructure 125 8.1 Introduction 125 8.2 Basic Equations 128 8.3 Results and Discussion 130 8.4 Summary 134 9 Conclusions and Future Work 143 9.1 Conclusions 143 9.2 Future Work 145 References 147 Publication list 172

    [1] E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics", Physical Review Letters Vol. 58 , 2059–2062 (1987).
    [2] S. John, "Strong localization of photons in certain disordered dielectric superlattices", Physical Review Letters Vol. 58, 2486–2489(1987).
    [3] J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ, 1995.
    [4] S. Fan, P. R. Villeneuve, J. D. Joanopoulos, H. A. Haus, “Channel Drop Tunneling through Localized States” , Physical Review Letter, Vol. 80, 960-963(1998).
    [5] S. Noda, A. Chutinan, M. Imada, "Trapping and emission of photons by a single defect in a photonic band gap structure," Nature Vol. 407, 608-610 (2000).
    [6] P. Lodahl, A. Floris van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelberg, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature (London) Vol. 430,654–657 (2004).
    [7] S. J. Orfanidis, Electromagnetic Waves and Antennas, Rutger University, 2008, www.ece.rutgers.edu/~orfanidi/ewa, Ch.7.
    [8] Y. H. Chen,” Independent modulation of defect modes in fractal photonic crystals with multiple defect layers”, Journal of Optical Society of America B, Vol. 26, 854-857 (2009).
    [9] Q. Qin, H. Liu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, N. B. Ming,” Resonance transmission modes in dual-periodical dielectric multilayer films”, Applied Physics Letters, Vol. 82, 4654-4656 (2003).
    [10] F. Qiao, C. Zhang, J. Wan,” Photonic quantum-well structures: Multiple channeled filtering phenomena “, Applied Physics Letters, Vol. 77, 3698-3700 (2000).
    [11] Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, L. E. Thomas, “A Dielectric Omnidirectional Reflector”, Science Vol. 282, 1679-1682(1998).
    [12] W. J. Tomlinson, C. Lin, "Optical wavelength-division multiplexer for the 1–1.4-micron spectral region", Electronics Letters, vol. 14, May 25, 1978, p. 345–347. adsabs.harvard.edu
    [13] H. Ishio, J. Minowa, K. Nosu, "Review and status of wavelength-division-multiplexing technology and its application", Journal of Lightwave Technology, Volume: 2, Issue: 4, Aug 1984, p. 448–463
    [14] Nim K. Cheung, Kiyoshi Nosu, Gerhard Winzer, "Guest Editorial / Dense Wavelength Division Multiplexing Techniques for High Capacity and Multiple Access Communication Systems", IEEE Journal on Selected Areas in Communications, Vol. 8 No. 6, August 1990 .
    [15] D. R. Smith, R. Dalichaouch, N. Kroll, S. Schultz, S. L. McCall, P. M. Platzman, "Photonic band structure and defects in one and two dimensions," Journal of Optical Society of America B, Vol. 10,2,314-321(1993).
    [16] C.-J. Wu, and Z. H. Wang, “Properties of defect modes in one-dimensional photonic crystals,” Prog. In Electromag. Res. vol. 103, 169-184 (2010).
    [17] Young-Ki Ha, Y.-C. Yang, J.-E. Kim, H. Y. Park,” Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals”, Applied Physics Letters, Vol. 79, 15-17(2001).
    [18] Yan-qing Lu, Jian-jun Zheng, Ya-lin Lu, Nai-ben Ming, and Zu-yan Xu, ” Frequency tuning of optical parametric generator in periodically poled optical superlattice LiNbO3 by electro-optic effect”, Applied Physics Letters, Vol. 74,123-125 (1999).
    [19] Q. Zhu, Q., Y. Zhang, “Defect modes and wavelength tuning of one-dimensional photonic crystal with lithium niobate”, Optik - International Journal for Light and Electron Optics, Vol. 120, 195-198(2009).
    [20] C.-J. Wu*, J.-J. Liao, T.-W. Chang, “Tunable multilayer Fabry-Perot resonator using electro-optical defect layer”, J. Electromagn. Waves Appl., vol. 24, no. 4, pp. 531-542(2010)
    [21] I. L. Lyubchanskii, N. N. Dadoenkova, A E Zabolotin, Y P Lee Th. Rasing,” A one-dimensional photonic crystal with a superconducting defect layer”, Journal of Optics A: Pure and Applied Optics, Vol. 11,114014 (2009).
    [22] S. C. Howells, L. A. Schlie,” Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz”, Appl. Phys. Lett. Vol. 69 550-553(1996).
    [23] P. Halevi, F. Ramos-Mendieta, “Tunable Photonic Crystals with Semiconducting Constituents”, Phys. Rev. Lett. Vol. 85, 1875–1878 (2000).
    [24] H. Tian, and J. Zi, “One-dimensional tunable photonic crystals by means of external magnetic fields," Optics Commun., Vol. 252,321-328, 2005.
    [25] C. Sabah, and S. Uckun, “Multilayer system of lorentz/drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
    [26] M. Inoue,, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, Magnetophotonic crystals," J. Phys. D: Appl. Phys., Vol. 39, R151-R161, 2006.
    [27] I. L. Lyubchanskii,, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and T. Rasing, “Magnetic photonic crystals," J. Phys. D:Appl. Phys., Vol. 36, R227-R287, 2003.
    [28] F. Figotin, Y. A. Godin, and I. Vitebsky, “Two-dimensional tunable photonic crystals," Phys. Rev. B, Vol. 57, 2841-2848, 1998.
    [29] M. Golosovsky, Y. Saado, and D. Davidov, “Self-assembly of floating magnetic particles into ordered structures: A promisingroute for the fabrication of tunable photonic band gap materials," Appl. Phys. Lett., Vol. 75, 4168-4170, 1999.
    [30] C.-S. Kee,, J. E. Kim, H. Y. Park, and H. Lim, “Two-dimensional tunable magnetic photonic crystals," Phys. Rev. B, Vol. 61, 15523-15525, 2000.
    [31] C.-J. Wu and Y.-C. Hsieh, H.-T. Hsu,” TUNABLE PHOTONIC BAND GAP IN A DOPED SEMICONDUCTOR PHOTONIC CRYSTAL IN NEAR INFRARED REGION”, Progress In Electromagnetics Research, Vol. 114, 271-283, 2011
    [32] E. Galindo-Linares, P. Halevi, and A. S. Sanchez, “Tuning of one-dimensional Si/SiO2 photonic crystals at the wavelength of 1.54 mm," Solid State Commun., Vol. 142, 67-70, 2007.
    [33] P. Halevi,and F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents”, Phys. Rev. Lett., Vol. 85, 1875-1878, 2000.
    [34] F. Qiao, C. Zhang, and J. Wan, “Photonic quantum-well structure: Multiple channeled filtering phenomena,” Appl. Phys. Lett., Vol. 77, 3698-3700, 2000.
    [35] J. Liu, J. Sun, C. Huang, W. Hu, and D. Huang, “Optimizing the spectral efficiency of photonic quantum well structures,” Optik, Vol. 120, 35-39, 2009.
    [36] J Liu, J. Sun, C. Huang, W. Hu, and M. Chen, “Improvement of spectral efficiency based on spectral splitting in photonic quantum-well structures,” IET Optoelectron. Vol. 2, 122-127, 2008.
    [37] C. S. Feng,, L. M. Mei, L. Z. Cai, P. Li, and X. L. Yang, “Resonant modes in quantum well structure of photonic crystals with different lattice constants,” Solid State Commun. Vol. 135, 330-334, 2005.
    [38] S. Haxha,, W. Belhadj, F. Abdelmalek, and H. Bouchriha, “Analysis of wavelength demultiplexer based on photonic crystals,” IEE Proc. Optoelectron., Vol. 152, 193-198, 2005.
    [39] X. Hu, Z. Liu, and Q. Gong, “A multichannel filter in a photonic crystal heterostructure containing single-negative materials,” J. Optics A, Vol. 9, 877–883, 2007.
    [40] C.-J. Wu, M.-H. Lee, W.-H. Chen, and T.-J. Yang, ”A mid-infrared multichannel filter in a photonic crystal heterostructure containing negative-permittivity materials,” J. Electromagn. Waves and Appl., Vol. 25, 1360–1371, 2011.
    [41] Y.-H. Chang, C.-C. Liu, and C.-J. Wu, “Use of photonic quantum well as tunable defect in multilayer narrowband reflection-and-transmission filter,” Optical Review, Vol. 17, 495-498, 2010.
    [42] W.-H Lin, C.-J. Wu, and S.-J. Chang, “Terahertz multichannel filter in a superconducting photonic crystal”, Optics Express, Vol. 18, 27155-27166, 2010.
    [43] P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988), Chap. 6.
    [44] M. G. Cottom, and D. R. Trilly, Introduction to Surface and Superlattice Excitations (University Press, Cambridge, 1989).
    [45] E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
    [46] S. John, “Strong localization of photons in certain disordered lattices,” Phys. Rev. Lett. 58, 2486-2489(1987).
    [47] J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ, 1995.
    [48] S. Fan, P. R. Villeneuve, J. D. Joannopoulos and H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
    [49] A. Noda, Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, pp. 608-610, Oct. 2000.
    [50] P. Lodahl, A. Floris van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelberg, W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals”, 2004, Nature , 430 : 654-657.
    [51] S. J. Orfanidis, Electromagnetic Waves and Antennas, Rutger University, 2008, www.ece.rutgers.edu/~orfanidi/ewa, Ch.7.
    [52] Y. H. Chen, “Independent modulation of defect modes in fractal photonic crystals with multiple defect layers," J. Opt. Soc. Am. B 26, 854-857 ( 2009).
    [53] Q. Qin, H. Liu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films”,Appl. Phys. Lett. 82 (2003) 4654-4657.
    [54] F. Qiao, C. Zhang, J. Wan, and J. Zi “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698-3701 (2000)
    [55] Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, L. E. Thomas, “A Dielectric Omnidirectional Reflector," Science 282, 1679–1682.
    [56] D. R. Smith, R. Dalichaouch, N. Kroll, S. Schultz, S. L. McCall, and P. M. Platzman, “Photonic band structure without and with defect in one-dimensional photonic crystal,” J. Opt. Soc. Am. B: Optical Physics 10, 314-321 (1993).
    [57] C.-J. Wu, Z.-H. Wang,“Properties of defect modes in one-dimensional photonic crystals,” Prog. Electromag. Res. 103, 169–184 (2010).
    [58] Y. K. Ha, Y. C. Yang, J. E. Kim, H. Y. Park,” Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals”, Appl. Phys. Lett.79,15-18 (2001).
    [59] Yan-qing Lu, Jian-jun Zheng, Ya-lin Lu, Nai-ben Ming, and Zu-yan Xu, “Frequency tuning of optical parametric generator in periodically poled optical superlattice LiNbO3 by electro-optic effect , “Appl. Phys. Lett. 74,123-126 (1999).
    [60] Q. Zhu and Y. Zhang, “Defect modes and wavelength tuning of one-dimensional photonic crystal with lithium niobate,” Optik 120, 195-198 (2009).
    [61] C.-J. Wu, J.-J. Liao, and T.-W. Chang, “Tunable multilayer Fabry-Perot resonator using electro-optical defect layer,” J. Electromagn. Waves and Appl. 24, 531-542 (2010)
    [62] I. L. Lyubchanskii, N. N. Dadoenkova, A E Zabolotin, Y P Lee Th. Rasing,” A one-dimensional photonic crystal with a superconducting defect layer,” J. Optics A:Pure Appl. Opt. 11, 114014 (2009).
    [63] S. C. Howells, L. A. Schlie,” Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz,” Appl. Phys. Lett. 69550-553 (1996).
    [64] P. Halevi and F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents”, Phys. Rev. Lett., Vol. 85, 1875-1878 (2000).
    [65] P. Yeh, Optical Waves in Layered Media, John Wiley & Sons, Singapore, 1991.
    [66] Galindo-Linares, E., P. Halevi, and A. S. Sanchez, “Tuning of one-dimensional Si/SiO2 photonic crystals at the wavelength of 1.54 mm," Solid State Commun., Vol. 142, 67-70, 2007.
    [67] W.-H. Lin, C.-J. Wu, T.-J. Yang, and S.-J. Chang,” Terahertz multichannel filter in a superconducting photonic crystal,” Optics Express 18,27155-27166 (2010).
    [68] Orfanidis, S. J., Electromagnetic Waves and Antennas, Rutger University, 2008, www.ece.rutgers.edu/~orfanidi/ewa.
    [69] D. R. Smith, R. Dalichaouch, N. Kroll, S. Schultz, S. L. McCall, and P. M. Platzman, “Photonic band structure without and with defect in one-dimensional photonic crystal,” J. Opt. Soc. Am. B: Optical Physics, Vol. 10, 314-321, 1993.
    [70] Y. K. Ha,, Y. C. Yang, J. E. Kim, and H. Y. Park, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett., Vol. 79, 15-17, 2001.
    [71] H.-T. Hsu, and C.-J. Wu, "Design rules for a Fabry-Perot narrow band transmission filter containing a metamaterial negative-index defect," Progress In Electromagnetics Research Letters, Vol. 9, 101-107, 2009.
    [72] H.-T. Hsu,, T.-W. Chang, T.-J. Yang, B.-H. Chu, and C.-J. Wu, “Analysis of wave properties in photonic crystal narrowband filters with left-handed defect”, J. Electromagn. Waves Appl., Vol. 24, 2285-2298, 2010.
    [73] C.-J. Wu, J.-J. Liao, and T. W. Chang, “Tunable multilayer Fabry-Perot resonator using electro-optical defect layer,” J. Electromagnetic Waves and Appl., Vol. 24, 531-542, 2010.
    [74] C.-J. Wu, and Z.-H. Wang, “Properties of defect modes in one-dimensional photonic crystals”, Progress In Electromagnetics Research, Vol. 103, 169-184, 2010.
    [75] C.-C. Liu, Y.-H. Chang, and C.-J. Wu, “Refractometric optical sensing by using a multilayer reflection and transmission narrowband filter”, J. Electromagnetic Waves and Appl., Vol. 24, 293-305, 2010.
    [76] C.-C. Liu, Y.-H. Chang, T.-J. Yang, and C.-J. Wu, “Narrowband filter in a heterostructured multilayer containing ultrathin metallic films”, Progress In Electromagnetics Research, Vol. 96, 329-346, 2009.
    [77] C. Wang, "Single-mode propagation of light in one-dimensional all-dielectric light-guiding systems," Progress In Electromagnetics Research B, Vol. 19, 65-93, 2010.
    [78] Y. H. Lee, and S. Y. Huang, "Electromagnetic susceptibility of an electromagnetic band-gap filter structure," Progress In Electromagnetics Research B, Vol. 15, 31-56, 2009.
    [79] Z. Eyni, S. Roshan Entezar, A. Namdar, and H. Tajalli, "Tamm states of a nonlinear slab sandwiched between a uniform medium and a one-dimensional photonic crystal," Progress In Electromagnetics Research Letters, Vol. 18, 115-124, 2010.
    [80] A. Banerjee, "Enhanced temperature sensing by using one-dimensional ternary photonic band gap structures," Progress In Electromagnetics Research Letters, Vol. 11, 129-137, 2009.
    [81] Y. Shi, "A compact polarization beam splitter based on a multimode photonic crystal waveguide with an internal photonic crystal section," Progress In Electromagnetics Research, Vol. 103, 393-401, 2010.
    [82] F. Qiao, C. Zhang, and J. Wan, “Photonic quantum-well structure: Multiple channeled filtering phenomena,” Appl. Phys. Lett., Vol. 77, 3698-3700, 2000.
    [83] J. Liu, J. Sun, C. Huang, W. Hu, and D. Huang, “Optimizing the spectral efficiency of photonic quantum well structures,” Optik, Vol. 120, 35-39, 2009.
    [84] Y.-H. Chang, C.-C. Liu, and C.-J. Wu, “Use of photonic quantum well as tunable defect in multilayer narrowband reflection-and-transmission filter,” Optical Review, Vol. 17, 495-498, 2010.
    [85] Liu, J. J. Sun, C. Huang, W. Hu, and M. Chen, “Improvement of spectral efficiency based on spectral splitting in photonic quantum-well structures,” IET Optoelectron. Vol. 2, 122-127, 2008.
    [86] S. Haxha, W. Belhadj, F. Abdelmalek, and H. Bouchriha, “Analysis of wavelength demultiplexer based on photonic crystals,” IEE Proc. Optoelectron., Vol. 152, 193-198, 2005.
    [87] C. S. Feng, L. M. Mei, L. Z. Cai, P. Li, and X. L. Yang, “Resonant modes in quantum well structure of photonic crystals with different lattice constants,” Solid State Commun. Vol. 135, 330-334, 2005.
    [88] W.-H Lin, C.-J. Wu, and S.-J. Chang, “Terahertz multichannel filter in a superconducting photonic crystal”, Optics Express, Vol. 18, 27155-27166, 2010.
    [89] P. Halevi, and F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents”, Phys. Rev. Lett., Vol. 85, 1875-1878, 2000.
    [90] P. Yeh, Optical Waves in Layered Media, John Wiley & Sons, Singapore, 1991.
    [91] X. Hu, Z. Liu, and Q. Gong, “A multichannel filter in a photonic crystal heterostructure containing single-negative materials,” J. Optics A, Vol. 9, 877–883, 2007.
    [92] Y.-T. Fang, and Z.-C. Liang, “Unusual transmission through usual one-dimensional photonic crystal in the presence of evanescent wave,” Optics Commun., Vol. 283, 2012-2018, 2010.

    [93] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ, 1995.
    [94] S. J. Orfanidis, , Electromagnetic Waves and Antennas, Rutger University, 2008, www.ece.rutgers.edu/~orfanidi/ewa, Ch.7
    [95] I. A. Sukhoivanov, and I. V. Guryev, Photonic Crystals, Springer-Verlag, Berlin, Heidelberg, 2009
    [96] W. Shen, X. Sun, Y. Zhang, Z. Luo, X. Liu, and P. Gu, , “Narrow band filter in both transmission and reflection with metal/dielectric thin films,” Optics Communications, Vol. 282, 242-246, 2009..
    [97] Y.-H. Chang, C.-C. Liu, T.-J. Yang, and C.-J. Wu, “Angular dependent of a narrow band reflection-and-transmission filter containing an ultra thin metallic film,” J. Opt. Soc. Am. B: Optical Physics, Vol. 26, 1141-1145, 2009.
    [98] C.-C. Liu, Y.-H. Chang, T.-J. Yang, and C.-J. Wu, “Narrowband filter in a heterostructured multilayer containing ultrathin metallic films,” Progress In Electromagnetics Research, PIER. 96, 329-349, 2009.
    [99] C.-J. Wu and Z.-H. Wang, "Properties of defect modes in one-dimensional photonic crystals," Progress In Electromagnetics Research, Vol. 103, 169-184, 2010.
    [100] C.-J. Wu, J.-J. Liao, and T. W. Chang, "Tunable multilayer Fabry-Perot resonator using electro-optical defect layer," Journal of Electromagnetic Waves and Applications, Vol. 24, 531-542, 2010.
    [101] H.-T. Hsu and C.-J. Wu, "Design rules for a Fabry-Perot narrow band transmission filter containing a metamaterial negative-index defect," Progress In Electromagnetics Research Letters, Vol. 9, 101-107, 2009.
    [102] Y. Q. Lu and J. J. Zheng, “Frequency tuning of optical parametric generator in periodically poled optical superlattice LiNbO3 by electro-optic effect,” Appl. Phys. Lett., Vol. 74, 123-125, 1999.
    [103] Y. Q. Lu, and J. J. Zheng, Zhu, Q., and Y. Zhang, “Defect modes and wavelength tuning of one-dimensional photonic crystal with lithium niobate,” Optik, Vol. 120, 195-198, 2009.
    [104] P. K. Choudhury and W. K. Soon, "TE mode propagation through tapered core liquid crystal optical fibers," Progress In Electromagnetics Research, Vol. 104, 449-463, 2010.
    [105] D. McPhail, M. Straub, and M. Gu, “Optical tuning of three-dimensional photonic crystals fabricated by femtosecond direct writing,” Appl. Phys. Lett., Vol. 87, 091117, 2005.
    [106] D., M. McPhail, Straub, and M. Gu, Halevi, P., J. A. Reyes-Avendano, and J. A. Reyes-Cervantes, “Electrically tuned phase transition and band structure in a liquid-crystal-infilled photonic crystal,” Phys. Rev. E, Vol. 73, R040701, 2006.

    [107] H. Tian and J. Zi, “One-dimensional tunable photonic crystals by means of external magnetic fields,” Optics Communications, Vol. 252, 321-328, 2005.
    [108] C. Sabah and S. Uckun, "Multilayer system of lorentz/drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
    [109] M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin3, T. Murzina3 and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D:Appl. Phys., Vol. 39, R151-R161, 2006.
    [110] I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and Th. Rasing, “Magnetic photonic crystals,” J. Phys. D:Appl. Phys., Vol. 36, R227-R287, 2003, and references therein.
    [111] C.-J. Wu, C.-L. Liu, and W.-K. Kuo, “Analysis of thickness-dependent optical properties in a one-dimensional superconducting photonic crystal,” J. Electromagnetic Waves and Applications, Vol. 23, 1113-1122, 2009.
    [112] W.-H. Lin, C.-J. Wu, T.-J. Yang, and S.-J. Chang, “Terahertz multichannel filter in a superconducting photonic crystal,” Optics Express, Vol. 18, 27155-27166, 2010.
    [113] S. M. Anlage, “The physics and applications of superconducting metamaterials,” J. Optics, Vol. 13, 024001, 2011, and references therein.
    [114] I. L. Lyubchanskii, N. N. Dadoenkova, A. E. Zabolotin, Y. P. Lee and Th. Rasing, “A one-dimensional photonic crystal with a superconducting defect layer,” J. Optics A:Pure Appl. Opt., Vol. 11, 114014, 2009.
    [115] S. C. Howells and L. A. Schlie, “Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz”, Appl. Phys. Lett., Vol. 69, 550-552, 1996.
    [116] P. Halevi and F. Ramos-Mendieta, “Tunable Photonic Crystals with Semiconducting Constituents,” Phys. Rev. Lett., Vol. 85, 1875-1878, 2000.
    [117] P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, Singapore, 1991).
    [118] X. Dai, Y. Xiang, S. Wen, and H. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb ,” J. Appl. Phys.109, 053104 (2011).
    [119] Edward Palik, Handbook of Optical Constants of Solids, Academic Press, USA, 1998.
    [120] J. A. Sánchez-Gil, and J. Gómez Rivas, "Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces," Phys. Rev. B 73 (20), 205410 (2006).
    [121] P. Markos, C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials, Princeton University Press, New Jersey (2008).
    [122] J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ (1995).
    [123] K. Sakoda, Optical Properties of Photonic Crystals, Springer-Verlag, Berlin (2001).
    [124] S. J. Orfanidis, Electromagnetic Waves and Antennas, Rutger University (2008), www.ece.rutgers.edu/ orfanidi/ewa.
    [125] M. Born, and E. Wolf, Principles of Optics, Cambridge, Adàn S. Sàncheza and P. Halevi, “Simulation of tuning of one-dimensional photonic crystals in the presence of free electrons and holes”, J. Appl. Phys. 94, 1, 797-799, (2003).
    [126] E. Galindo-Linares, P. Halevi, and A. S. Sanchez, “Tuning of one-dimensional Si/SiO2 photonic crystals at the wavelength of 1.54 mm," Solid State Commun., Vol. 142, 67-70, (2007).
    [127] P. Yeh, Optical Waves in Layered Media, John Wiley & Sons, Singapore (1991).
    [128] C.-J. Wu, B.-H. Chu, M.-D. Weng, “Analysis of optical reflection in a chirped distributed Bragg reflector”, J. Electromagn. Waves and Appl., vol. 23, no. 1, pp. 129-131, (2009).
    [129] H. Li, H. Chen, X. Qiu, “Bandgap extension of disordered 1D binary photonic crystals," Physica B, Vol. 279, 164-167, (2000).
    [130] V. A. Tolmachev, T. S. Perova, J. A. Pilyugina, R. A. Moore, “Experimental evidence of photonic band gap extension for disordered 1D photonic crystals based on Si," Optics Comm., Vol. 259, 104-106, (2006).
    [131] L. Qi, Z. Yang, X. Gao, F. Lan, Z. Shi, Z. Liang, “Bandgap extension of disordered one-dimensional metallic-dielectric pho-tonic crystals," IEEE International Vacuum Electronics Conference, IVEC, 158-159, (2008).
    [132] X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures," Appl. Phys. Lett., Vol. 80, No. 23, 4291-4293, (2002).
    [133] R. Srivastava, S. Pati, S. P. Ojha, “Enhancement of omnidirectional reflection in photonic crystal heterostructures," Progress In Electromagnetics Research B, Vol. 1, 197-208, (2008).
    [134] S. K. Awasthi, U. Malaviya, S. P. Ojha, “Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material," J. Opt. Soc. Am. B: Optical Physics, Vol. 23, 2566-2571, (2006).
    [135] A. Banerjee, “Enhanced temperature sensing by using one- dimensional ternary photonic band gap structures," Progress In Electromagnetics Research Letters, Vol. 11, 129-137 (2009).
    [136] C.-J. Wu, Y.-H. Chung, B.-J. Syu, T.-J. Yang, ” BAND GAP EXTENSION IN A ONE-DIMENSIONAL TERNARY METAL-DIELECTRIC PHOTONIC CRYSTAL”, PIER, 102, 81-93 (2010).
    [137] R. Marquez-Islas, B. Flores-Desirena, F. Pérez-Rodríguez, “Exciton polaritons in one-dimensional metal-semiconductor photonic crystal," J. Nanosci. Nanotechnol., Vol. 8, 6584-6588 (2008).
    [138] S. J. Orfanidis, Electromagnetic Waves and Antennas, Rutger University, 2008, www.ece.rutgers.edu/~orfanidi/ewa.
    [139] C.-J. Wu, J.-J. Liao, and T. W. Chang, “Tunable multilayer Fabry-Perot resonator using electro-optical defect layer,” J. Electromagn. Waves and Appl., vol. 24, pp. 531-542, 2010.
    [140] Q. Zhu and Y. Zhang, “Defect modes and wavelength tuning of one-dimensional photonic crystal with lithium niobate,” Optik, vol. 120, pp.195-198, 2009.
    [141] X. Hu, Q. Gong, S. Feng, B. Cheng, and D. Zhang, “Tunable multichannel filter in nonlinear ferroelectric photonic crystal,” Optics Communication, vol. 253, pp. 138-144, 2005.
    [142] Y. K. Ha, Y. C. Yang, J. E. Kim, and H. Y. Park, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett., vol. 79, pp. 15-17, 2001.
    [143] Y. Q. Lu and J. J. Zheng, “Frequency tuning of optical parametric generator in periodically poled optical superlattice LiNbO3 by electro-optic effect,” Appl. Phys. Lett., vol. 74, pp. 123-125, 1999.
    [144] F. Qiao, C. Zhang, and J. Wan, “Photonic quantum-well structure: Multiple channeled filtering phenomena,” Appl. Phys. Lett., vol. 77, pp. 3698-3700, 2000.
    [145] J. Liu, J. Sun, C. Huang, W. Hu, and D. Huang, “Optimizing the spectral efficiency of photonic quantum well structures,” Optik, vol. 120, pp. 35-39, 2009.
    [146] C. S. Feng, L. M. Mei, L. Z. Cai, P. Li, and X. L. Yang, “Resonant modes in quantum well structure of photonic crystals with different lattice constants,” Solid State Commun. vol. 135, pp. 330-334, 2005.
    [147] J. Liu, J. Sun, C. Huang, W. Hu, and M. Chen, “Improvement of spectral efficiency based on spectral splitting in photonic quantum-well structures,” IET Optoelectron. vol. 2, pp. 122-127, 2008.
    [148] Y.-H. Chang, C.-C. Liu, and C.-J. Wu, “Use of photonic quantum well as tunable defect in multilayer narrowband reflection-and-transmission filter,” Optical Review, vol. 17, pp. 495-498, 2010.
    [149] I. L. Lyubchanskii, N. N. Dadoenkova, A E Zabolotin, Y P Lee and Th. Rasing, “A one-dimensional photonic crystal with a superconducting defect layer,” J. Optics A:Pure Appl. Opt., vol. 11, pp.114014, 2009.
    [150] P. Halevi, J. A. Reyes-Avendano, and J. A. Reyes-Cervantes, “Electrically tuned phase transition and band structure in a liquid-crystal-infilled photonic crystal,” Phys. Rev. E, vol. 73, pp. R040701, 2006.
    [151] H. Tian and J. Zi, “One-dimensional tunable photonic crystals by means of external magnetic fields,” Optics Commun., vol. 252, pp. 321-328, 2005.
    [152] M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin3, T. Murzina3 and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D:Appl. Phys., vol. 39, pp. R151-R161, 2006.
    [153] I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and Th. Rasing, “Magnetic photonic crystals,” J. Phys. D:Appl. Phys., vol. 36, pp. R227-R287, 2003, and references therein.
    [154] E. Galindo-Linares, P. Halevi, and A. S. Sanchez, “Tuning of one-dimensional Si/SiO2 photonic crystals at the wavelength of 1.54 mm,” Solid State Commun., vol. 142, pp. 67-70, 2007, and references therein.
    [155] C.-J. Wu, Y.-C. Hsieh, and H.-T. Hsu, “Tunable photonic band gap in a doped semiconductor photonic crystal in near infrared region”, Progress In Electromagnetics Research, vol. 114, pp. 271-283, 2011.
    [156] P. Yeh, Optical Waves in Layered Media, John Wiley & Sons, Singapore, 1991.
    [154] E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett., vol. 58, pp. 2059-2062, 1987.
    [155] S. John, “Strong localization of photons in certain disordered lattices,” Phys. Rev. Lett., vol. 58, pp. 2486-2489, 1987.
    [156] S. J. Orfanidis, Electromagnetic Waves and Antennas, www.ece.rutgers.edu/~orfandid/ewa, 2008.
    [157] D. R. Smith, R. Dalichaouch, N. Kroll, S. Schultz, S. L. McCall, and P. M. Platzman, “Photonic band structure without and with defect in one-dimensional photonic crystal,” J. Opt. Soc. Am. B: Optical Physics, vol. 10, pp. 314-321, 1993.
    [158] H.-T. Hsu, and C.-J. Wu, "Design rules for a Fabry-Perot narrow band transmission filter containing a metamaterial negative-index defect," Prog. Electromagn. Res. Lett., vol. 9, pp. 101-107, 2009.
    [159] Z.-Y. Wang, X.-M. Cheng, X.-Q. He, S.-L. Fan, and W.-Z. Yan, "Photonic crystal narrow filters with negative refractive index structural defects," Prog. Electromagn. Res. vol. 80, pp. 421-430, 2008.
    [160] C.-J. Wu, J.-J. Liao, and T.-W. Chang, “Tunable multilayer Fabry-Perot resonator using electro-optical defect layer,” J. Electromagn. Waves Appl., vol. 24, pp. 531-542, 2010.
    [161] Q. Zhu and Y. Zhang, “Defect modes and wavelength tuning of one-dimensional photonic crystal with lithium niobate,” Optik, vol. 120, pp. 195-198, 2009.
    [162] Y.-H. Chang, C.-C. Liu, T.-J. Yang, and C.-J. Wu, “Tunable multilayer narrowband filter containing an ultrathin metallic film and a lithium niobate defect,” Opt. Quan. Electron., vol. 42, pp. 359-365, 2011.
    [163] Z.-H. Wang and C.-J. Wu, “Properties of defect modes in one-dimensional photonic crystals,” Prog. Electromagn. Res., vol. 103, pp. 196-184, 2010.
    [164] F. Qiao, C. Zhang, J. Wan, and J. Zi “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett., vol. 77, pp. 3698-3701, 2000.
    [165] J. Liu, J. Sun, C. Huang, W. Hu, and M. Chen, “Improvement of spectral efficiency based on spectral splitting in photonic quantum-well structures,” IET Optoelectron. vol. 2, pp. 122-127, 2008.
    [166] J. Liu, J. Sun, C. Huang, W. Hu, and D. Huang, “Optimizing the spectral efficiency of photonic quantum well structures,” Optik, vol. 120, pp. 35-39, 2009.
    [167] C. S. Feng, L. M. Mei, L. Z. Cai, P. Li, and X. L. Yang, “Resonant modes in quantum well structure of. photonic crystals with different lattice constants,” Solid State Commun., vol. 135, pp. 330-334, 2005.
    [168] S. Haxha, W. Belhadj, F. Abdelmalek, and H. Bouchriha, “Analysis of wavelength demultiplexer based on photonic crystals,” IEE Proc. Optoelectron., vol. 152, pp. 193-198, 2005.
    [169] P. Halevi and F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents”, Phys. Rev Lett., vol. 85, pp. 1875-1878, 2000.
    [170] P. Yeh, Optical Waves in Layered Media, Wiley, New York, 1988, Chap. 6.
    [171] X. Hu, Z. Liu, and Q. Gong, “A multichannel filter in a photonic crystal heterostructure containing single-negative materials,” J. Optics A, vol. 9, pp. 877–883, 2007.
    [172] C.-J. Wu, M.-H. Lee, W.-H. Chen, and T.-J. Yang, ”A mid-infrared multichannel filter in a photonic crystal heterostructure containing negative-permittivity materials,” J. Electromagn. Waves Appl., vol. 25, pp. 1360–1371, 2011.
    [173] Y.-T. Fang and Z.-C. Liang, “Unusual transmission through usual one-dimensional photonic crystal in the presence of evanescent wave,” Optics Commun., vol. 283, pp. 2012-2018, 2010.

    無法下載圖示 校內:2022-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE