簡易檢索 / 詳目顯示

研究生: 王政元
Wang, Jheng-Yuan
論文名稱: 應用TSMC CMOS製程及乾式蝕刻後製程於矽鍺熱電能源採集晶片之研究
Development of a SiGe Thermoelectric Energy Harvester Chip by TSMC CMOS Process and Dry Etching Post Process
指導教授: 楊世銘
Yang, Shih-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 75
中文關鍵詞: 能源採集器CMOS製程熱電能源轉換熱電偶尺寸
外文關鍵詞: Energy harvesters, CMOS process, Thermoelectric energy conversion
相關次數: 點閱:64下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱電式能源採集晶片可以將裝置的熱端與冷端之間的溫差直接轉換為可用的電能,進而能夠將環境中多餘的廢熱轉換為可用的電能。本研究提出整合於 TSMC 矽鍺互補式金屬氧化物半導體製程設計與製作之微型化矽鍺熱電式能源採集晶片,其面積為 。除了元件的結構設計之外再搭配適當的後製程步驟以製作可以提升能源採集器性能的熱隔離空腔,並以實驗量測加以探討不同尺寸的熱電偶對於能源採集器性能的影響。研究結果顯示最佳熱電偶尺寸為長度45μm、寬度2μm,其輸出電壓為60.62mV,voltage factor為23.53 V/cm2K ;單位面積280μm*92μm下之電阻為9.45MΩ,其中包含了63組熱電偶。

    Thermoelectric energy harvester chip converts temperature difference between hot and cold junctions into electric energy. This thesis aims at studying a thermoelectric energy harvester chip of by TSMC 0.18μm SiGe BICMOS 3P6M process. By measuring micro thermoelectric energy generator (μTEG) performance and investigating the optimal thermoleg size, it is shown that the TEG chip with thermoleg length = 45μm and width = 2μm has the best performance of output voltage 60.62mV with voltage factor 23.53 V/cm2K. The resistance is 9.45MΩ, and one unit-cell (280μm*92μm) contains 63 thermocouples. Thermoelectric energy harvester chip presented in this work consists of isolative cavity and support structure to improve the performance.

    Abstract in Chinese i Abstract vii Acknowkedgement viii Content ix List of Tables xi List of Figures xii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 2 1.2.1 Energy harvester 2 1.2.2 Applications of thermoelectric energy harvester 3 1.2.3 Thermoelectric material 4 1.2.4 Design of thermoelectric energy harvester chip 6 1.2.5 Etching Post-process 9 1.3 Outline 9 Chapter 2 Thermoelectric Energy Harvester 13 2.1 Introduction 13 2.2 Comparison of Different Energy Conversions 13 2.3 Thermoelectric Energy Harvester Chip 17 2.4 Summary 20 Chapter 3 Design and Fabrication of Thermoelectric Energy Harvesters Chip 28 3.1 Introduction 28 3.2 Configuration of Thermoelectric Energy Harvester Chip 28 3.2.1 Design of TEG chip with TSMC SiGe18 3P6M process 29 3.2.2 Design for post-process 31 3.2.3 Design of TEG chip with TSMC SiGe18 3P3M process 32 3.2.4 Fabrication of thermoelectric energy harvester chip 33 3.3 Post Process for Isolative Cavity and Support Structure 34 3.4 Summary 36 Chapter 4 Measurement of Thermoelectric Energy Harvester Chip 58 4.1 Introduction 58 4.2 Thermoelectric Energy Harvester Chip Experiment 58 4.3 Energy Harvester Chip Experimental Result 59 4.4 Summary 62 Chapter 5 Summary and Conclusions 68 References 71

    Arnold, D. P., “Review of Microscale Magnetic Power Generation,” IEEE Transactions on Magnetics, Vol. 43, pp. 3940-3951, 2007.
    Beeby, S. P., Tudor, M. J., and White, N. M., “Energy Harvesting Vibration Sources for Microsystems Applications,” Measurement Science and Technology, Vol. 17, pp. R175-R195, 2006.
    Boisseau, S., Despesse, G., and Ahmed, B., “Electrostatic Conversion for Vibration Energy Harvesting,” Small-Scale Energy Harvesting, 2012.
    Carmo, J. P., Goncalves, L. M., and Correia, J. H., “Thermoelectric Microconverter for Energy Harvesting Systems,” IEEE Transactions on Industrial Electronics, Vol. 57, pp. 861-867, 2010.
    Chen, G. M., Ma, L. Y., Huang, I. Y., and Wu, T. E., “Development of a Novel Transparent Micro-Thermoelectric Generator for Solar Energy Conversion,” Nano/Micro Engineered and Molecular Systems (NEMS), 2011 IEEE International Conference on, pp. 976-979, 2011
    Chuang, Y. J., “Development of Vibration Energy Harvester by Bimorph Piezoelectric Cantilever Beams,” M.S. Thesis, National Cheng Kung University 2016.
    Cook-Chennault, K. A., Thambi, N., and Sastry, A. M., “Powering MEMS Portable Devices—A Review of Non-Regenerative and Regenerative Power Supply Systems with Special Emphasis on Piezoelectric Energy Harvesting Systems,” Smart Materials and Structures, Vol. 17, pp. 043001, 2008.
    Elefsiniotis, A., Samson, D., Becker, T., and Schmid, U., “Investigation of the Performance of Thermoelectric Energy Harvesters Under Real Flight Conditions,” Journal of Electronic Materials, Vol. 42, pp. 2301-2305, 2013.
    Ferre Llin, L., Samarelli, A., Cecchi, S., Chrastina, D., Isella, G., Müller Gubler, E., Etzelstorfer, T., Stangl, J., and Paul, D. J., “ Thermoelectric Cross-Plane Properties on p- and n-Ge/SixGe1-x Superlattices,” Thin Solid Films, Vol. 602, pp. 90-94, 2016.
    Francioso, L., De Pascali, C., Farella, I., Martucci, C., Cretì, P., Siciliano, P., and Perrone, A., “Flexible thermoelectric generator for ambient assisted living wearable biometric sensors,” Journal of Power Sources, Vol. 196, pp. 3239-3243, 2011.
    Francioso, L., Pascali, C. D., Siciliano, P., Risi, A. D., Amico, S. D., Veri, C., and Pasca, M., “Thin Film Technology Flexible Thermoelectric Generator and Dedicated ASIC for Energy Harvesting Applications,” Advances in Sensors and Interfaces (IWASI), 2013 5th IEEE International Workshop on, pp. 104-107, 2013
    Huesgen, T., Woias, P., and Kockmann, N., “Design and Fabrication of MEMS Thermoelectric Generators with High Temperature Efficiency,” Sensors and Actuators A: Physical, Vol. 145-146, pp. 423-429, 2008.
    Kao, P. H., Shih, P. J., Dai, C. L., and Liu, M. C., “Fabrication and Characterization of CMOS-MEMS Thermoelectric Micro Generators,” Sensors (Basel), Vol. 10, pp. 1315-1325, 2010.
    Kim, H. S., Kim, J.-H., and Kim, J., “A Review of Piezoelectric Energy Harvesting Based on Vibration,” International Journal of Precision Engineering and Manufacturing, Vol. 12, pp. 1129-1141, 2011.
    Lee, T. H., “Development of Multilayered Quantum Well Thermoelectric and Low Frequency Vibration Energy Harvesters,” Ph.D. Thesis, National Cheng Kung University, 2008.
    Leonov, V., Andel, Y. , Wang, Z., Vullers, R. J. M., and Hoof, C. V., “Micromachined Polycrystalline Si Thermopiles in a T-shirt,” Sensors & Transducers Journal, Vol. 127, pp. 15-26, 2011.
    Leonov, V., Torfs, T., Van Hoof, C., and Vullers, R. J. M., “Smart Wireless Sensors Integrated in Clothing: an Electrocardiography System in a Shirt Powered Using Human Body Heat,” Sensors & Transducers, Vol. 107, pp. 165-174, 2009.
    Leonov, V., and Vullers, R. J. M., “Wearable Electronics Self-Powered by Using Human Body Heat: The State of the Art and the Perspective,” Journal of Renewable and Sustainable Energy, Vol. 1, pp. 062701, 2009.
    Minnich, A. J., Dresselhaus, M. S., Ren, Z. F., and Chen, G., “Bulk nanostructured thermoelectric materials: current research and future prospects,” Energy & Environmental Science, Vol. 2, pp. 466, 2009.
    Priya, S., and Inman, D. J., “Energy harvesting technologies,” Springer. Book, 2009.
    Rawat, P., Singh, K. D., Chaouchi, H., and Bonnin, J. M., “Wireless Sensor Networks: a Survey on Recent Developments and Potential Synergies,” The Journal of Supercomputing, Vol. 68, pp. 1-48, 2013.
    Rezania, A., and Rosendahl, L. A., “Thermal Effect of a Thermoelectric Generator on Parallel Microchannel Heat Sink,” Energy, Vol. 37, pp. 220-227, 2012.
    Roth, R., Rostek, R., Cobry, K., Kohler, C., Groh, M., and Woias, P., “Design and Characterization of Micro Thermoelectric Cross-Plane Generators With Electroplated and Reflow Soldering,” Journal of Microelectromechanical Systems, Vol. 23, pp. 961-971, 2014.
    Roth, R., Rostek, R., Lenk, G., Kratschmer, M., Cobry, K., and Woias, P., “Two-layer process for a micro thermoelectric cross-plane generator with electroplating and reflow soldering,” Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors XXVII: The 17th International Conference on, pp. 486-489, 2013
    Shu, Y. C., and Lien, I. C., “Analysis of Power Output for Piezoelectric Energy Harvesting Systems,” Smart Materials and Structures, Vol. 15, pp. 1499-1512, 2006.
    Strasser, M., Aigner, R., Franosch, M., and Wachutka, G., “Miniaturized Thermoelectric Generators Based on Poly-Si and Poly-SiGe Surface Micromachining,” Sensors and Actuators A: Physical, Vol. 97–98, pp. 535-542, 2002.
    Strasser, M., Aigner, R., Lauterbach, C., Sturm, T. F., Franosch, M., and Wachutka, G., “Micromachined CMOS Thermoelectric Generators as on-chip Power Supply,” Sensors and Actuators A: Physical, Vol. 114, pp. 362-370, 2004.
    Su, J., Leonov, V., Goedbloed, M., van Andel, Y., de Nooijer, M. C., Elfrink, R., Wang, Z., and Vullers, R. J. M., “A Batch Process Micromachined Thermoelectric Energy Harvester: Fabrication and Characterization,” Journal of Micromechanics and Microengineering, Vol. 20, pp. 104005, 2010.
    Su, J., Vullers, R. J. M., Goedbloed, M., van Andel, Y., Leonov, V., and Wang, Z., “Thermoelectric Energy Harvester Fabricated by Stepper,” Microelectronic Engineering, Vol. 87, pp. 1242-1244, 2010.
    Thangaraj, K., Elefsiniots, A., Becker, T., Schmid, U., Lees, J., Featherston, C. A., and Pullin, R., “Energy Storage Options for Wireless Sensors Powered by Aircraft Specific Thermoelectric Energy Harvester,” Microsystem Technologies, Vol. 20, pp. 701-707, 2013.
    Wang, F., and Hansen, O., “Electrostatic Energy Harvesting Device with out-of-the-plane Gap Closing Scheme,” Sensors and Actuators A: Physical, Vol. 211, pp. 131-137, 2014.
    Wang, Z., Leonov, V., Fiorini, P., and Van Hoof, C., “Realization of a Wearable Miniaturized Thermoelectric Generator for Human Body Applications,” Sensors and Actuators A: Physical, Vol. 156, pp. 95-102, 2009.
    Xie, J., Lee, C., and Feng, H., “Design, Fabrication, and Characterization of CMOS MEMS-Based Thermoelectric Power Generators,” Journal of Microelectromechanical Systems, Vol. 19, pp. 317-324, 2010.
    Yang, M. Z., Wu, C. C., Dai, C. L., and Tsai, W. J., “Energy Harvesting Thermoelectric Generators Manufactured Using the Complementary Metal Oxide Semiconductor Process,” Sensors (Basel), Vol. 13, pp. 2359-2367, 2013.
    Yang, S. M., Cong, M., and Lee, T., “Application of Quantum Well-like Thermocouple to Thermoelectric Energy Harvester by BiCMOS Process,” Sensors and Actuators A: Physical, Vol. 166, pp. 117-124, 2011.
    Yang, S. M., Lee, T., and Cong, M., “Design and Verification of A Thermoelectric Energy Harvester with Stacked Polysilicon Thermocouples by CMOS Process,” Sensors and Actuators A: Physical, Vol. 157, pp. 258-266, 2010.
    Yang, S. M., Lee, T., and Jeng, C. A., “Development of a Thermoelectric Energy Harvester with Thermal Isolation Cavity by Standard CMOS Process,” Sensors and Actuators A: Physical, Vol. 153, pp. 244-250, 2009.
    Yang, Y., Dong Xu, G., and Liu, J., “A Prototype of an Implantable Thermoelectric Generator for Permanent Power Supply to Body Inside a Medical Device,” Journal of Medical Devices, Vol. 8, pp. 0145071-0145076, 2013.
    Yu, X., Wang, Y., Liu, Y., Li, T., Zhou, H., Gao, X., Feng, F., Roinila, T., and Wang, Y., “CMOS MEMS-based Thermoelectric Generator with an Efficient Heat Dissipation Path,” Journal of Micromechanics and Microengineering, Vol. 22, pp. 105011, 2012.
    Yuan, Z., Ziouche, K., Bougrioua, Z., Lejeune, P., Lasri, T., and Leclercq, D., “A Planar Micro Thermoelectric Generator with High Thermal Resistance,” Sensors and Actuators A: Physical, Vol. 221, pp. 67-76, 2015.

    無法下載圖示 校內:2022-07-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE