| 研究生: |
黃靖雯 Huang, Ching-Wen |
|---|---|
| 論文名稱: |
量子計算之應用:以量子退火求解旅行推銷員問題,及以量子機器學習進行PCB缺陷檢測 Applications of Quantum Computing: Quantum Annealing for Solving the Traveling Salesman Problem and Quantum Machine Learning for PCB Defect Detection |
| 指導教授: |
賴青瑞
Lia, Ching-Jui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 量子計算 、量子退火 、旅行推銷員問題 、量子機器學習 、PCB 缺陷檢測 |
| 外文關鍵詞: | Quantum Computing, Quantum Annealing, Traveling Salesman Problem, Quantum Machine Learning, PCB Defect Detection |
| 相關次數: | 點閱:23 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文介紹量子計算的基本原理,並探討其在量子退火與量子機器學習兩大領域中的應用。第一部分中,我們透過將旅行推銷員問題(Traveling Salesman Problem, TSP)轉換為二次無約束二元最佳化(Quadratic Unconstrained Binary Optimization, QUBO)問題,應用量子退火進行求解,展現量子方法處理NP-困難問題的能力。
第二部分中,我們回顧了數種量子機器學習演算法,包括量子卷積神經網路(Quantum Convolutional Neural Network, QCNN)與量子支援向量機(Quantum Support Vector Machine, QSVM)。最後,我們展示如何將量子演算法應用於實際的印刷電路板(PCB)缺陷檢測任務,並與傳統方法進行效能比較。實驗結果顯示,量子計算在理論分析與實務問題解決方面皆展現出相當潛力。
In this thesis, we present the fundamentals of quantum computing and explore its applications in both quantum annealing and machine learning. In Part 1, we apply quantum annealing to solve the Traveling Salesman Problem (TSP) by formulating it into a Quadratic Unconstrained Binary Optimization (QUBO) problem. This demonstrates the capability of quantum methods to address NP-hard problems.
In Part 2, we then review several quantum machine learning algorithms, including the quantum convolutional neural network (QCNN) and the quantum support vector machine (QSVM). Finally, we demonstrate how quantum algorithms can be applied to a practical PCB defect detection task, comparing their performance with classical approaches. The results highlight the potential of quantum computing in both theoretical and real-world problem domains.
[1] Iris Cong, Soonwon Choi, and Mikhail D. Lukin. Quantum convolutional neural networks. Nature Physics, 15:1273–1278, 2019.
[2] Ian Goodfellow Courville, Yoshua Bengio, and Aaron. Deep Learning. MIT Press, 2016.
[3] Norbert Elter. Pcb defect dataset, 2022. Kaggle dataset used for defect classification.
[4] D-Wave Systems Inc. D-wave documentation portal. https://docs.dwavesys.com/, 2023.
[5] Cadima J. Jolliffe, I. T. Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci., 374(2065), 20150202., 2016.
[6] Tadashi Kadowaki and Hidetoshi Nishimori. Quantum annealing in the transverse ising model. Physical Review E, 58(5):5355–5363, 1998.
[7] Maria Schuld Killoran and Nathan. Quantum machine learning in feature Hilbert spaces. Physical Review Letters, 122, 2019.
[8] Antoine Jacquier Oleksiy Kondratyev. Qauntun Machine Learning and Optimisation in Finance: On the Road to Quantum Advantage. Packt Publishing, 2022.
[9] Mohseni M. Rebentrost Lloyd, S. Quantum principal component analysis. Nature Physics, 10:631–633, 2014.
[10] C. C. McGeoch. Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice. Springer International Publishing, 2022.
[11] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge, 2010.
[12] Masoud Mohseni Patrick Rebentrost and Seth Lloyd3. Quantum support vector machine for big data classification. Phys. Rev. Lett., 113(13), 2014.
[13] pinokiokr. Pcb defect detection. https://www.kaggle.com/code/pinokiokr/pcb-defect-detection, 2022.
[14] Jansen Sabine Ruedi, Ruskai Mary Beth, and Seiler. Bounds for the adiabatic approximation with applications to quantum computation. Journal of Mathematical Physics, 48, 2007.
[15] Kaiming He Sun, Xiangyu Zhang, Shaoqing Ren, and Jian. Deep residual learning for image recognition. https://arxiv.org/abs/1512.03385, 2015.
[16] Stephen Boyd Vandenberghe and Lieven. Convex Optimization. Cambridge University Press, 2009.
[17] Kristan Temme Aram W. Harrow Abhinav Kandala Jerry M. Chow Vojtech Havlicek, Antonio D. C´orcoles and Jay M. Gambetta. Supervised learning with quantum enhanced feature spaces. Nature, 567:209–212, 2019.
[18] Zhi-Hua Zhou. Support Vector Machine, pages 129–153. Springer Singapore, 2021.
校內:2026-07-01公開