簡易檢索 / 詳目顯示

研究生: 周蓁宜
Chou, Chen-Yi
論文名稱: 含部份水解亞磷酯基之聚芴:合成、鑑定及應用於提昇高分子發光二極體的效率
Polyfluorene Functionalized with Partially Hydrolyzed Phosphonate Groups: Synthesis, Characterization and Application in Electron Injection Layer to Enhance Efficiency of PLEDs
指導教授: 陳雲
Chen, Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 71
中文關鍵詞: 聚芴磷酸酯基高分子發光二極體電子注入層光電元件
外文關鍵詞: Polyfluorene, Phosphonate group, PLEDs, Electron-injection layer (EIL), Optoelectronic devices
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究合成側鏈含部分水解亞磷酸酯(以鉀為對離子)之聚芴(PF-EPK),與含亞磷酸酯側鏈之聚芴(PF-EP)摻混作為高分子發光二體之電子注入層。PF-EPK的水解比例約為65~70%是透過核磁共振光譜及熱重分析圖對照 PF-EP推算出。因PF-EP 和 PF-EPK兩者具極相似的聚芴主鏈及側鏈結構,在電化學性質上的氧化電位約-5.5 eV,而還原電位則約為-2.3 eV。藉由簡易混摻將PF-EPK加入PF-EP中做為電子注入層,應用於高分子發光二極體(ITO/PEDOT:PSS/EML/(PF-EP+PF-EPK)/Al)。選用商業化之發黃光共軛高分子Superyellow (SY)作為發光層(EML),再以PF-EPK混摻PF-EP的薄層塗佈於其上。由於PF-EP和PF-EPK可溶於甲醇及微量水,其塗佈不會造成發光層界面遭溶劑侵蝕的問題。摻混PF-EPK於PF-EP中有效提升元件的發光效能,摻雜2.5 %之PF-EPK時其發光效能最佳,最大亮度、最大電流效率及最大功率效率分別為12052 cd/m2、3.62 cd/A 及1.38 lm/W。元件效能的提昇歸功於陰極鋁的修飾降低了電子注入的能障,因而促進電子注入,以光伏打量測之開路電壓(Voc)證實以2.5%之PF-EPK添加擁有最大偏壓,證實電子注入能力的提昇。此外,添加不等量之PF-EPK於PF-EP中,其成膜型態保持幾乎相同的粗糙度,且其在空氣中的穩定度和相容性均優於一般無機鹽類的摻混。以上結果顯示,側鏈含部分水解亞磷酸酯之聚芴(PF-EPK)是具有相當潛力的電子注入材料。

    Polyfluorene containing functional phosphonate pendent groups (PF-EP) was synthesized, from which the pendent phosphonate groups was partially hydrolyzed (with potassium as counter ion) to prepare PF-EPK for application as electron-injection layer in polymer light-emitting diodes (PLEDs). The amount of hydrolysis was estimated to be about 65-70%, by comparing the 1H NMR and TGA of PF-EPK with those of PF-EP. Both PF-EP and PF-EPK demonstrate similar electrochemical properties due to their polyfluorene main chain and similar pendent groups, the HOMO and LUMO levels were around -5.5 eV and -2.3 eV, respectively. Multilayer PLEDs (ITO/PEDOT:PSS/EML/PF-EP+PF-EPK/Al) were fabricated using blends of PF-EPK and PF-EP as electron-injection layer (EIL), commercially available Superyellow (SY) as emission layer (EML). Since PF-EP and PF-EPK are soluble in methanol with a small amount of water, interface mixing between EML and EIL can be avoided during spin-coating of the EIL. Blending of PF-EPK into PF-EP leads to enhanced device performance. The best performance was obtained for the device with PF-EP doped with 2.5% PF-EPK as EIL. The maximum luminance, maximum current efficiency and maximum luminous power efficiency were 12052 cd/m2, 3.62 cd/A and 1.38 lm/W, respectively. The improved device performance has been attributed to enhanced electron injection ability through cathode modification by the EIL. The open circuit voltage (Voc), obtained by photovoltaic measurements, showed the maximum bias at 2.5% PF-EPK, confirming the enhancement in electron-injection ability. The surface morphology of EIL remains almost unchanged regardless of blend ratios of PF-EPK. In addition, the blends of PF-EF with PF-EFK are more compatible and more stable in the air than those with inorganic salts. These results show that PF-EPK is a promising electron-injection material for optoelectronic devices.

    目 錄 摘要 I Abstract II 致 謝 III 目 錄 IV 流程目錄 VI 表目錄 VI 圖目錄 VII 第一章 緒論 1 1-1.前言 1 1-2.理論基礎 2 1-2-1.共軛導電高分子 2 1-2-2.螢光理論 5 1-2-3.影響螢光強度的因素 6 1-2-4.能量轉移 8 1-2-5.分子間激發態(Interchain Exciton) 9 第二章 文獻回顧 11 2-1.元件發光原理及結構 11 2-1-1.發光原理 11 2-1-2.單層元件 12 2-1-3.多層元件 13 2-2.有機發光二極體的效率 15 2-2-1.影響PLED發光效率參數 15 2-2-2.增進載子平衡的方法 15 2-2-3.提升電子注入效率 16 2-3.水/醇類共軛高分子在光電元件上的應用 18 2-3-1.氨基和四級銨鹽官能基之WSCPs 19 2-3-2.二乙醇胺官能基之WSCPs 20 2-3-3.其他官能基之WSCPs作為電子注入層在PLEDs上應用 21 2-4.亞磷酯基之聚芴(PF-EP)在有機發光電元件上的應用 22 2-5.研究動機 24 第三章 實驗內容 25 3-1.實驗裝置與設備 25 3-2.鑑定儀器 27 3-3.物性及光電性質測量儀器 28 3-4.藥品及材料 33 3-5.合成步驟與結果 34 3-6.單體與高分子合成 35 3-7.元件製作 38 第四章 結果與討論 41 4-1.單體與高分子的合成與鑑定 42 4-1-1.核磁共振光譜(NMR) 42 4-1-2.元素分析儀(EA) 47 4-2.高分子熱性質分析 48 4-2-1.熱重分析 48 4-3.電化學性質分析 50 4-3-1.高分子電化學性質探討 50 4-4.高分子PF-EP + PF-EPK在發光二極體(PLED)的元件特性 53 4-5.元件表現探討 59 4-5-1.元件陰極改質 59 4-5-2.電子注入層的成膜性 61 第五章 結論 64 參考文獻 66 流程目錄 Scheme 3-1. Synthesis of PF-EP and PF-EPK. 34 表目錄 Table 1-1. 取代基對物質螢光波長及效率的影響 7 Table 2-1. 各種金屬的功函數 16 Table 4-1. The synthetic result of compounds 47 Table 4-2. The synthetic result of polymer 47 Table 4-3. Electrochemical potentials of polymers. 51 Table 4-4. Optoelectronic properties of the light-emitting diodes 58 Table 4-5. Photovoltaic properties of the light-emitting diodes. 60 Table 4-6. Surface morphology of different films spin-coated on top of SY 62

    1. Pope, M.; Magnante, P.; Kallmann, H. P., Electroluminescence in Organic Crystals. J Chem Phys 1963, 38, 2042-&.
    2. Tang, C. W.; Vanslyke, S. A., Organic Electroluminescent Diodes. Appl Phys Lett 1987, 51, 913-915.
    3. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B., Light-Emitting-Diodes Based on Conjugated Polymers. Nature 1990, 347, 539-541.
    4. 郭昭輝, 塑膠資訊 10月, 2002.
    5. 方思文. 含Carbazole芴衍生物的合成、鑑定與電致發光元件電洞傳輸層之應用. 碩士論文, 國立成功大學2012.
    6. Korzhov, M.; Shikler, R.; Andelman, D., Plastic which conducts electricity? . PhysicaPlus 14.04, 2008.
    7. 呂淮安. 以水/醇可溶性之含氮冠醚基芴衍生物為電子注入層製備高效率高分子發光二極體. 碩士論文, 國立成功大學2012.
    8. Shapley, P. Silicon Semiconductors.
    9. Skoog, D. A.; Holler, F. J.; Crouch, S. R., Principles of Instrumental Analysis. 6th ed. 2007.
    10. Lakowicz, J. R., Principles of Fluorescence Spectroscopy. 3rd ed.; Springer2006.
    11. Pawlizak, S. Introduction of Fluorescence Microscopy
    12. Kafafi, Z. H., Organic Electroluminescence. 2005.
    13. May, V.; Kühn, O., Charge and Energy Transfer Dynamics in Molecular Systems. 2nd, rev. and enl. ed. 2004.
    14. 陳巧佩. 含氮冠醚基團共聚苯的合成、鑑定與其在化學感測器及電子注入層之應用. 碩士論文, 國立成功大學2012.
    15. Corporation, L. T. Fluorescence Resonance Energy Transfer (FRET)—Note 1.2. 16. Akcelrud, L., Electroluminescent polymers. Prog Polym Sci 2003, 28, 875-962.
    17. Tran, V.; Schwartz, B. J., Role of nonpolar forces in aqueous solvation: Computer simulation study of solvation dynamics in water following changes in solute size, shape, and charge. J Phys Chem B 1999, 103, 5570-5580.
    18. Walzer, K.; Maennig, B.; Pfeiffer, M.; Leo, K., Highly efficient organic devices based on electrically doped transport layers. Chem Rev 2007, 107, 1233-1271.
    19. 黃孝文; 陳雲, 化工資訊月刊 2001, p 8.
    20. 葉昆明; 陳雲, 科學發展 2005, p 58.
    21. 陳信宏; 陳雲, 中工高雄會刊 2006, p 72.
    22. 楊素華, 光訊雜誌 2002, p 29.
    23. 陳金鑫; 黃孝文, 有機電激發光材料與元件. 五南2005.
    24. Shirota, Y.; Kageyama, H., Charge carrier transporting molecular materials and their applications in devices. Chem Rev 2007, 107, 953-1010.
    25. Wohlgenannt, M.; Tandon, K.; Mazumdar, S.; Ramasesha, S.; Vardeny, Z. V., Formation cross-sections of singlet and triplet excitons in pi-conjugated polymers (vol 409, pg 494, 2001). Nature 2001, 411, 617-617.
    26. Malliaras, G. G.; Scott, J. C., The roles of injection and mobility in organic light emitting diodes. J Appl Phys 1998, 83, 5399-5403.
    27. Wakimoto, T.; Fukuda, Y.; Nagayama, K.; Yokoi, A.; Nakada, H.; Tsuchida, M., Organic EL cells using alkaline metal compounds as electron injection materials. Ieee T Electron Dev 1997, 44, 1245-1248.
    28. Ganzorig, C.; Suga, K.; Fujihira, M., Alkali metal acetates as effective electron injection layers for organic electroluminescent devices. Mat Sci Eng B-Solid 2001, 85, 140-143.
    29. Ganzorig, C.; Fujihira, M., Evidence for alkali metal formation at a cathode interface of organic electroluminescent devices by thermal decomposition of alkali metal carboxylates during their vapor deposition. Appl Phys Lett 2004, 85, 4774-4776.
    30. Stossel, M.; Staudigel, J.; Steuber, F.; Blassing, J.; Simmerer, J.; Winnacker, A., Space-charge-limited electron currents in 8-hydroxyquinoline aluminum. Appl Phys Lett 2000, 76, 115-117.
    31. Lee, T. H.; Huang, J. C. A.; Pakhomov, G. L.; Guo, T. F.; Wen, T. C.; Huang, Y. S.; Tsou, C. C.; Chung, C. T.; Lin, Y. C.; Hsu, Y. J., Organic-Oxide Cathode Buffer Layer in Fabricating High-Performance Polymer Light-Emitting Diodes. Adv Funct Mater 2008, 18, 3036-3042.
    32. Lin, M. W.; Wen, T. C.; Hsu, Y. J.; Guo, T. F., Poly(ethylene oxide)-functionalized Al cathodes of tunable electron-injection capabilities for efficient polymer light-emitting diodes. J Mater Chem 2011, 21, 18840-18846.
    33. Huang, F.; Niu, Y. H.; Zhang, Y.; Ka, J. W.; Liu, M. S.; Jen, A. K. Y., A conjugated, neutral surfactant as electron-injection material for high-efficiency polymer light-emitting diodes. Adv Mater 2007, 19, 2010-+.
    34. Xu, X. F.; Han, B.; Chen, J. W.; Peng, J. B.; Wu, H. B.; Cao, Y., 2,7-Carbazole-1,4-phenylene Copolymers with Polar Side Chains for Cathode Modifications in Polymer Light-Emitting Diodes. Macromolecules 2011, 44, 4204-4212.
    35. Huang, F.; Wu, H. B.; Cao, Y., Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices. Chem Soc Rev 2010, 39, 2500-2521.
    36. Xiao, H. B.; Leng, B.; Tian, H., Hole transport triphenylamine-spirosilabifluorene alternating copolymer: synthesis and optical, electrochemical and electroluminescent properties. Polymer 2005, 46, 5707-5713.
    37. Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A., Electron transport materials for organic light-emitting diodes. Chem Mater 2004, 16, 4556-4573.
    38. Hughes, G.; Bryce, M. R., Electron-transporting materials for organic electroluminescent and electrophosphorescent devices. J Mater Chem 2005, 15, 94-107.
    39. Huang, F.; Cheng, Y. J.; Zhang, Y.; Liu, M. S.; Jen, A. K. Y., Crosslinkable hole-transporting materials for solution processed polymer light-emitting diodes. J Mater Chem 2008, 18, 4495-4509.
    40. Muller, C. D.; Falcou, A.; Reckefuss, N.; Rojahn, M.; Wiederhirn, V.; Rudati, P.; Frohne, H.; Nuyken, O.; Becker, H.; Meerholz, K., Multi-colour organic light-emitting displays by solution processing. Nature 2003, 421, 829-833.
    41. Veinot, J. G. C.; Marks, T. J., Toward the ideal organic light-emitting diode. The versatility and utility of interfacial tailoring by cross-linked siloxane interlayers. Accounts Chem Res 2005, 38, 632-643.
    42. Huang, F.; Wu, H. B.; Peng, J. B.; Yang, W.; Cao, Y., Polyfluorene polyelectrolytes and their precursors processable from environment-friendly solvents (Alcohol or water) for PLED applications. Curr Org Chem 2007, 11, 1207-1219.
    43. Hoven, C. V.; Garcia, A.; Bazan, G. C.; Nguyen, T. Q., Recent Applications of Conjugated Polyelectrolytes in Optoelectronic Devices. Adv Mater 2008, 20, 3793-3810.
    44. Jiang, H.; Taranekar, P.; Reynolds, J. R.; Schanze, K. S., Conjugated Polyelectrolytes: Synthesis, Photophysics, and Applications. Angew Chem Int Edit 2009, 48, 4300-4316.
    45. Steuerman, D. W.; Garcia, A.; Dante, M.; Yang, R.; Lofvander, J. P.; Nguyen, T. Q., Imaging the interfaces of conjugated polymer optoelectronic devices. Adv Mater 2008, 20, 528-+.
    46. Chen, Z.; Jiang, C. Y.; Niu, Q. L.; Peng, J. B.; Cao, Y., Enhanced green electrophosphorescence by using polyfluorene host via interfacial energy transfer from polyvinylcarbazole. Org Electron 2008, 9, 1002-1009.
    47. Decher, G., Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 1997, 277, 1232-1237.
    48. Huang, F.; Wu, H. B.; Wang, D.; Yang, W.; Cao, Y., Novel electroluminescent conjugated polyelectrolytes based on polyfluorene. Chem Mater 2004, 16, 708-716.
    49. Oh, S. H.; Na, S. I.; Nah, Y. C.; Vak, D.; Kim, S. S.; Kim, D. Y., Novel cationic water-soluble polyfluorene derivatives with ion-transporting side groups for efficient electron injection in PLEDs. Org Electron 2007, 8, 773-783.
    50. Vak, D.; Oh, S. H.; Kim, D. Y., Efficient single-component light-emitting electrochemical cells with an ion-conducting water-soluble polyfluorene. Appl Phys Lett 2009, 94.
    51. Oh, S. H.; Vak, D.; Na, S. I.; Lee, T. W.; Kim, D. Y., Water-soluble polyfluorenes as an electron injecting layer in PLEDs for extremely high quantum efficiency. Adv Mater 2008, 20, 1624-+.
    52. Lee, T. W.; Chung, Y.; Kwon, O.; Park, J. J., Self-organized gradient hole injection to improve the performance of polymer electroluminescent devices. Adv Funct Mater 2007, 17, 390-396.
    53. Kanicki, J.; Lee, S. J.; Hong, Y.; Su, C. C., Optoelectronic properties of poly(fluorene) co-polymer light-emitting devices on a plastic substrate. J Soc Inf Display 2005, 13, 993-1002.
    54. Huang, F.; Zhang, Y.; Liu, M. S.; Jen, A. K. Y., Electron-Rich Alcohol-Soluble Neutral Conjugated Polymers as Highly Efficient Electron-Injecting Materials for Polymer Light-Emitting Diodes. Adv Funct Mater 2009, 19, 2457-2466.
    55. Huang, F.; Zhang, Y.; Liu, M. S.; Cheng, Y. J.; Jen, A. K. Y., High-efficiency and color stable blue-light-emitting polymers and devices. Adv Funct Mater 2007, 17, 3808-3815.
    56. Huang, F.; Shih, P. I.; Liu, M. S.; Shu, C. F.; Jen, A. K. Y., Lithium salt doped conjugated polymers as electron transporting materials for highly efficient blue polymer light-emitting diodes. Appl Phys Lett 2008, 93.
    57. Niu, Y. H.; Ma, H.; Xu, Q. M.; Jen, A. K. Y., High-efficiency light-emitting diodes using neutral surfactants and aluminum cathode. Appl Phys Lett 2005, 86.
    58. Niu, Y. H.; Jen, A. K. Y.; Shu, C. F., High-efficiency polymer light-emitting diodes using neutral surfactant modified aluminum cathode. J Phys Chem B 2006, 110, 6010-6014.
    59. Huang, F.; Wang, X. H.; Wang, D. L.; Yang, W.; Cao, Y., Synthesis and properties of a novel water-soluble anionic polyfluorenes for highly sensitive biosensors. Polymer 2005, 46, 12010-12015.
    60. Garcia, A.; Yang, R.; Jin, Y.; Walker, B.; Nguyen, T. Q., Structure-function relationships of conjugated polyelectrolyte electron injection layers in polymer light emitting diodes. Appl Phys Lett 2007, 91.
    61. Jin, Y.; Bazan, G. C.; Heeger, A. J.; Kim, J. Y.; Lee, K., Improved electron injection in polymer light-emitting diodes using anionic conjugated polyelectrolyte. Appl Phys Lett 2008, 93.
    62. Zhou, G.; Qian, G.; Ma, L.; Cheng, Y. X.; Xie, Z. Y.; Wang, L. X.; Jing, X. B.; Wang, F. S., Polyfluorenes with phosphonate groups in the side chains as chemosensors and electroluminescent materials. Macromolecules 2005, 38, 5416-5424.
    63. Zhou, G.; Geng, Y. H.; Cheng, Y. X.; Xie, Z. Y.; Wang, L. X.; Jing, X. B.; Wang, F. S., Efficient blue electroluminescence from neutral alcohol-soluble polyfluorenes with aluminum cathode. Appl Phys Lett 2006, 89.
    64. Zhang, B. H.; Xie, Z. Y.; Wang, L. X., Phosphonate-functionalized polyfluorene and its application in organic optoelectronic devices. Polym Bull 2012, 68, 829-845.
    65. Tung, R. T., Recent advances in Schottky barrier concepts. Mat Sci Eng R 2001, 35, 1-138.
    66. Choong, V. E.; Park, Y.; Shivaparan, N.; Tang, C. W.; Gao, Y., Deposition-induced photoluminescence quenching of tris-(8-hydroxyquinoline) aluminum. Appl Phys Lett 1997, 71, 1005-1007.
    67. Choong, V.; Park, Y.; Gao, Y.; Wehrmeister, T.; Mullen, K.; Hsieh, B. R.; Tang, C. W., Dramatic photoluminescence quenching of phenylene vinylene oligomer thin films upon submonolayer Ca deposition. Appl Phys Lett 1996, 69, 1492-1494.
    68. Zhang, B. H.; Qin, C. J.; Niu, X. D.; Xie, Z. Y.; Cheng, Y. X.; Wang, L. X.; Li, X. L., On the origin of efficient electron injection at phosphonate-functionalized polyfluorene/aluminum interface in efficient polymer light-emitting diodes. Appl Phys Lett 2010, 97.
    69. Le, Q. T.; Yan, L.; Gao, Y. G.; Mason, M. G.; Giesen, D. J.; Tang, C. W., Photoemission study of aluminum/tris-(8-hydroxyquinoline) aluminum and aluminum/LiF/tris-(8-hydroxyquinoline) aluminum interfaces. J Appl Phys 2000, 87, 375-379.
    70. Oyamada, T.; Yoshizaki, H.; Sasabe, H.; Adachi, C., Efficient electron injection characteristics of triazine derivatives for transparent OLEDs (TOLEDs). Chem Lett 2004, 33, 1034-1035.
    71. Huang, J. S.; Xu, Z.; Yang, Y., Low-work-function surface formed by solution-processed and thermally deposited nanoscale layers of cesium carbonate. Adv Funct Mater 2007, 17, 1966-1973.
    72. Ye, T. L.; Zhu, M. R.; Chen, J. S.; Fu, Q.; Zhao, F. C.; Shi, C. S.; Hu, Y.; Ma, D. G.; Yang, C. L., Efficient electron injection layer based on thermo-cleavable materials for inverted bottom-emission polymer light emitting diodes. J Mater Chem 2012, 22, 6413-6418.
    73. Bhattacharya, A. K.; Thyagarajan, G., The Michaelis-Arbuzov Rearrangement. Chem Rev 1981, 81, 415-430.
    74. Stokes, K. K.; Heuze, K.; McCullough, R. D., New phosphonic acid functionalized, regioregular polythiophenes. Macromolecules 2003, 36, 7114-7118.
    75. Pinto, M. R.; Kristal, B. M.; Schanze, K. S., A water-soluble poly(phenylene ethynylene) with pendant phosphonate groups. Synthesis, photophysics, and layer-by-layer self-assembled films. Langmuir 2003, 19, 6523-6533.
    76. Ye, T. L.; Zhu, M. R.; Chen, J. S.; Ma, D. G.; Yang, C. L.; Xie, W. F.; Liu, S. Y., Efficient multilayer electrophosphorescence white polymer light-emitting diodes with aluminum cathodes. Org Electron 2011, 12, 154-160.
    77. Becker, H.; Spreitzer, H.; Kreuder, W.; Kluge, E.; Schenk, H.; Parker, I.; Cao, Y., Soluble PPVs with enhanced performance - A mechanistic approach. Adv Mater 2000, 12, 42-+.
    78. Guo, T. F.; Yang, F. S.; Tsai, Z. J.; Wen, T. C.; Hsieh, S. N.; Fu, Y. S.; Chung, C. T., Organic oxide/Al composite cathode in efficient polymer light-emitting diodes. Appl Phys Lett 2006, 88.
    79. Huang, F.; Shih, P. I.; Shu, C. F.; Chi, Y.; Jen, A. K. Y., Highly Efficient Polymer White-Light-Emitting Diodes Based on Lithium Salts Doped Electron Transporting Layer. Adv Mater 2009, 21, 361-365.
    80. Ma, W. L.; Iyer, P. K.; Gong, X.; Liu, B.; Moses, D.; Bazan, G. C.; Heeger, A. J., Water/methanol-soluble conjugated copolymer as an electron-transport layer in polymer light-emitting diodes. Adv Mater 2005, 17, 274-+.

    下載圖示 校內:2018-08-12公開
    校外:2018-08-12公開
    QR CODE