| 研究生: |
謝郁政 Xie, Yu-Zheng |
|---|---|
| 論文名稱: |
多孔鈣基骨取代物支架培養軟骨細胞之研究 Study of Cultivating Chondrocytes on Porous Calcium-based Bone Substitute Scaffold |
| 指導教授: |
朱建平
Ju, Chien-Ping 陳瑾惠 Chern Lin, Jiin-Huey |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 關節軟骨 、軟骨細胞 、細胞黏附 、生物支架 |
| 外文關鍵詞: | articular cartilage, chondrocyte, cell adhesion, scaffold |
| 相關次數: | 點閱:75 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在醫學上,關節軟骨的修復有許多種療程,其目的是為了使關節軟骨復原,修復能夠分泌關節滑液的透明軟骨,不希望長出不具備此功能的纖維軟骨。尤其是老年族群,因為常年的使用,關節軟骨的厚度降低,也較難分泌足夠的關節滑液,經常造成關節炎等疾病。
本實驗使用來自喜樂醫療器材股份有限公司的甦骨粒®作為生物細胞支架,以此生物支架與SD大鼠或紐西蘭大白兔的肋軟骨細胞混合培養,製作成含有軟骨細胞的生物支架。透過預先在植入材上培養取自透明軟骨的軟骨細胞,期望在植入後可以提高透明軟骨的恢復速度。
使用SD大鼠的軟骨細胞對預溼與否的影響進行探討,透過MMA包埋,以H&E染色法分析其組織學,在光學顯微鏡下進行觀察。結果顯示,在較高的CBS-400/培養基比例下,軟骨細胞較難貼附在CBS-400上。而降低此比例,且不進行預溼處理,使用掃描式電子顯微鏡觀察,發現軟骨細胞能夠生長在CBS-400上。
以動物模式的觀點來說,更大型的動物較接近人體的軟骨結構,接下來採用紐西蘭大白兔的軟骨細胞,以改變材料-細胞共同培養的天數及初始細胞添加數量作為變因,探討軟骨細胞在不同條件下貼附植入材的狀況及生長分化現象。經由石蠟包埋方式,以H&E染色法進行組織學分析,在光學顯微鏡下觀察共同培養後的材料在切片上的細胞分布。結果顯示,初始細胞濃度104 unit並無觀察到軟骨細胞貼附在基材上生長,而初始細胞濃度105、106 unit都能觀察到在軟骨細胞基底材料上貼附並生長。
此結果說明,甦骨粒®具備作為軟骨細胞載體的生物支架的能力。
In order to make the damaged cartilage tissue repair faster, implants with chondrocytes are considered to be helpful. In this study, I used EZECHBONE® granule from Joy Medical Devices Co., LTD as a scaffold and seeded chondrocytes from SD rats’ or New Zealand white rabbits’ costal cartilage on the granules. Before the implantation, as the chondrocytes have already grown on the granules, the healing of cartilage can be speeded up because of the seeded chondrocytes.
First, animals were sacrificed, and the costal cartilage tissue was cut off right after sacrificing. The costal cartilage tissue was digested by trypsin and collagenase. Then the chondrocytes were cultured in DMEM after being extracted and subcultured for one time. After seeding the chondrocytes on the granules, the granules were fixed with formalin for 24 hours and dehydrated by series of ethanol. The dehydration process was started from 30% ethanol and ended by absolute ethanol. After dehydration, the granules were embedded in MMA or paraffin. To observe the distribution of chondrocytes on the granules, H&E (hematoxylin and eosin) was used to stain the nucleus of chondrocytes on the histological sections.
The results showed that the initial cell number influenced cell adhesion. Initial concentration of 10,000 units had no cell viability on the granules; in the contrast, cells can be found with initial concentration of 100,000 and 1,000,000 units. The capability of being chondrocyte carriers was confirmed on the granules.
Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., & Watson, J. D. (2003). Molecular biology of the cell.
Alexander, H., Parsons, J. R., Strauchler, I. D., & Weiss, A. B. (1985). Bio-absorbable composite tissue scaffold. In: Google Patents.
Amiel, D., Coutts, R. D., Harwood, F. L., Ishizue, K. K., & Kleiner, J. B. (1988). The chondrogenesis of rib perichondrial grafts for repair of full thickness articular cartilage defects in a rabbit model: a one year postoperative assessment. Connective tissue research, 18(1), 27-39.
ANDERSEN, M. L., & WINTER, L. M. F. (2019). Animal models in biological and biomedical research - experimental and ethical concerns. Anais da Academia Brasileira de Ciências, 91. Retrieved from http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652019000200701&nrm=iso.
Angermann, P., Harager, K., & Tobin, L. (2002). Arthroscopic chondrectomy as a treatment of cartilage lesions. Knee Surgery, Sports Traumatology, Arthroscopy, 10(1), 6-9.
Atala, A. (2008). Advances in tissue and organ replacement. Current stem cell research & therapy, 3(1), 21-31.
Barry, J., Gidda, H., Scotchford, C., & Howdle, S. (2004). Porous methacrylate scaffolds: supercritical fluid fabrication and in vitro chondrocyte responses. Biomaterials, 25(17), 3559-3568.
Benjamin, M., & Evans, E. (1990). Fibrocartilage. Journal of anatomy, 171, 1.
Berger, M., Kreutz, F. T., Horst, J. L., Baldi, A. C., & Koff, W. J. (2007). Phase I study with an autologous tumor cell vaccine for locally advanced or metastatic prostate cancer. J Pharm Pharm Sci, 10(2), 144-152.
Bhardwaj, N., Nguyen, Q. T., Chen, A. C., Kaplan, D. L., Sah, R. L., & Kundu, S. C. (2011). Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering. Biomaterials, 32(25), 5773-5781.
Bhosale, A. M., & Richardson, J. B. (2008). Articular cartilage: structure, injuries and review of management. British Medical Bulletin, 87(1), 77-95. Retrieved from https://doi.org/10.1093/bmb/ldn025. doi:10.1093/bmb/ldn025
Bian, W., Li, D., Lian, Q., Li, X., Zhang, W., Wang, K., & Jin, Z. (2012). Fabrication of a bio‐inspired beta‐Tricalcium phosphate/collagen scaffold based on ceramic stereolithography and gel casting for osteochondral tissue engineering. Rapid Prototyping Journal.
Boushell, M. K., Khanarian, N. T., LeGeros, R. Z., & Lu, H. H. (2017). Effect of ceramic calcium–phosphorus ratio on chondrocyte‐mediated biosynthesis and mineralization. Journal of Biomedical Materials Research Part A, 105(10), 2694-2702.
Browne, J. E., & Branch, T. P. (2000). Surgical alternatives for treatment of articular cartilage lesions. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 8(3), 180-189.
Bryan, V., & Kunzler, A. (2002). Implantable joint prosthesis. In: Google Patents.
Chao, P.-h. G., West, A. C., & Hung, C. T. (2006). Chondrocyte intracellular calcium, cytoskeletal organization, and gene expression responses to dynamic osmotic loading. American Journal of Physiology-Cell Physiology, 291(4), C718-C725. Retrieved from https://journals.physiology.org/doi/abs/10.1152/ajpcell.00127.2005. doi:10.1152/ajpcell.00127.2005
Collins, J. (2014). Oxygen and pH-sensitivity of articular chondrocytes. University of Liverpool,
Collins, J., Moots, R., Winstanley, R., Clegg, P., & Milner, P. (2013). Oxygen and pH-sensitivity of human osteoarthritic chondrocytes in 3-D alginate bead culture system. Osteoarthritis and Cartilage, 21(11), 1790-1798.
Combe, E., & Smith, D. (1968). Studies on the preparation of calcium sulphate hemihydrate by an autoclave process. Journal of Applied Chemistry, 18(10), 307-312.
Commons, W. (2018, 11 Mar 2018, 06:22 UTC). File:Cell Adhesion.png --- Wikimedia Commons{,} the free media repository. Retrieved from https://commons.wikimedia.org/w/index.php?title=File:Cell_Adhesion.png&oldid=291711669
Cotta-Pereira, G., Del-Caro, L., & Monies, G. (1984). Distribution of elastic system fibers in hyaline and fibrous cartilages of the rat. Cells Tissues Organs, 119(2), 80-85.
Das, R., Van Osch, G., Kreukniet, M., Oostra, J., Weinans, H., & Jahr, H. (2010). Effects of individual control of pH and hypoxia in chondrocyte culture. Journal of Orthopaedic Research, 28(4), 537-545.
De Vries, G. H., & Boullerne, A. I. (2010). Glial cell lines: an overview. Neurochemical research, 35(12), 1978-2000.
Dutta, R. C., & Dutta, A. K. (2009). Cell-interactive 3D-scaffold; advances and applications. Biotechnology advances, 27(4), 334-339.
Eggli, P., Müller, W., & Schenk, R. (1988). Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clinical orthopaedics and related research(232), 127-138.
Favalli, A., Tavilla, A., Robortella, R., & Stefanini, I. (2019). Adaptive Bio-impedance Measurement. Paper presented at the 2019 E-Health and Bioengineering Conference (EHB).
Fedewa, M. M., Oegema Jr, T. R., Schwartz, M. H., MacLeod, A., & Lewis, J. L. (1998). Chondrocytes in culture produce a mechanically functional tissue. Journal of orthopaedic research, 16(2), 227-236.
Gonzalez, S., Naranjo, A., Serrano, L. M., Chang, W. C., Wright, C. L., & Jensen, M. C. (2004). Genetic engineering of cytolytic T lymphocytes for adoptive T‐cell therapy of neuroblastoma. The Journal of Gene Medicine: A cross‐disciplinary journal for research on the science of gene transfer and its clinical applications, 6(6), 704-711.
Gordon, J., Amini, S., & White, M. K. (2013). General overview of neuronal cell culture. In Neuronal Cell Culture (pp. 1-8): Springer.
Gugala, Z., & Gogolewski, S. (2000). In vitro growth and activity of primary chondrocytes on a resorbable polylactide three‐dimensional scaffold. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 49(2), 183-191.
Gumbiner, B. M. (1996). Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell, 84(3), 345-357.
Guo, J., Jourdian, G. W., & Maccallum, D. K. (1989). Culture and growth characteristics of chondrocytes encapsulated in alginate beads. Connective tissue research, 19(2-4), 277-297.
Guo, X., Wang, C., Duan, C., Descamps, M., Zhao, Q., Dong, L., . . . Song, Y. Q. (2004). Repair of osteochondral defects with autologous chondrocytes seeded onto bioceramic scaffold in sheep. Tissue engineering, 10(11-12), 1830-1840.
Hansen, O. M., Foldager, C. B., Christensen, B. B., Everland, H., & Lind, M. (2013). Increased chondrocyte seeding density has no positive effect on cartilage repair in an MPEG-PLGA scaffold. Knee Surgery, Sports Traumatology, Arthroscopy, 21(2), 485-493.
Harris, J. D., Siston, R. A., Pan, X., & Flanigan, D. C. (2010). Autologous chondrocyte implantation: a systematic review. JBJS, 92(12), 2220-2233.
Hirohashi, S., & Kanai, Y. (2003). Cell adhesion system and human cancer morphogenesis. Cancer science, 94(7), 575-581.
Holmes, R. E. (1979). Bone regeneration within a coralline hydroxyapatite implant. Plastic and reconstructive surgery, 63(5), 626-633.
Hornburg, D., Drepper, C., Butter, F., Meissner, F., Sendtner, M., & Mann, M. (2014). Deep proteomic evaluation of primary and cell line motoneuron disease models delineates major differences in neuronal characteristics. Molecular & Cellular Proteomics, 13(12), 3410-3420.
Horrocks, C., Halse, R., Suzuki, R., & Shepherd, P. R. (2003). Human cell systems for drug discovery. Current opinion in drug discovery & development, 6(4), 570-575.
Hulbert, S., Hench, L., Forbers, D., & Bowman, L. (1982). History of bioceramics. Ceramics international, 8(4), 131-140.
Hunziker, E. (2002). Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects: Osteoarthritis and cartilage.
Hunziker, E. B., Lippuner, K., Keel, M., & Shintani, N. (2015). An educational review of cartilage repair: precepts & practice–myths & misconceptions–progress & prospects. Osteoarthritis and Cartilage, 23(3), 334-350.
Huwe, L. W., Brown, W. E., Hu, J. C., & Athanasiou, K. A. (2018). Characterization of costal cartilage and its suitability as a cell source for articular cartilage tissue engineering. Journal of tissue engineering and regenerative medicine, 12(5), 1163-1176.
Isyar, M., Yilmaz, I., Sirin, D. Y., Yalcin, S., Guler, O., & Mahirogullari, M. (2016). A practical way to prepare primer human chondrocyte culture. Journal of orthopaedics, 13(3), 162-167.
Jiang, J., Tang, A., Ateshian, G. A., Guo, X. E., Hung, C. T., & Lu, H. H. (2010). Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair. Annals of biomedical engineering, 38(6), 2183-2196.
Kato, Y., & Gospodarowicz, D. (1984). Growth requirements of low-density rabbit costal chondrocyte cultures maintained in serum-free medium. Journal of Cellular Physiology, 120(3), 354-363. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/jcp.1041200314. doi:10.1002/jcp.1041200314
Kay, S., Thapa, A., Haberstroh, K. M., & Webster, T. J. (2002). Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion. Tissue engineering, 8(5), 753-761.
Klawitter, J., Bagwell, J., Weinstein, A., Sauer, B., & Pruitt, J. (1976). An evaluation of bone growth into porous high density polyethylene. Journal of biomedical materials research, 10(2), 311-323.
Kurt, K., Andersen, C. B., & Kromann-Andersen, B. (1995). A comparison between the effects of paraffin and plastic embedding of the normal and obstructed minipig detrusor muscle using the optical dissector. The Journal of urology, 154(6), 2170-2173.
Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Scott, M. P., Bretscher, A., . . . Matsudaira, P. (2008). Molecular cell biology: Macmillan.
Lu, J., Flautre, B., Anselme, K., Hardouin, P., Gallur, A., Descamps, M., & Thierry, B. (1999). Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. Journal of Materials Science: Materials in Medicine, 10(2), 111-120.
Lv, M., Zhou, Y., Chen, X., Han, L., Wang, L., & Lu, X. L. (2018). Calcium signaling of in situ chondrocytes in articular cartilage under compressive loading: Roles of calcium sources and cell membrane ion channels. Journal of Orthopaedic Research®, 36(2), 730-738.
Marlovits, S., Zeller, P., Singer, P., Resinger, C., & Vécsei, V. (2006). Cartilage repair: generations of autologous chondrocyte transplantation. European journal of radiology, 57(1), 24-31.
Mateo, M., Generous, A., Sinn, P. L., & Cattaneo, R. (2015). Connections matter− how viruses use cell–cell adhesion components. Journal of cell science, 128(3), 431-439.
Mayr, H., Klehm, J., Schwan, S., Hube, R., Südkamp, N., Niemeyer, P., . . . Bohner, M. (2013). Microporous calcium phosphate ceramics as tissue engineering scaffolds for the repair of osteochondral defects: biomechanical results. Acta biomaterialia, 9(1), 4845-4855.
McGinty, J. B., & Burkhart, S. S. (2003). Operative arthroscopy: Lippincott Williams & Wilkins.
Michaud, E. J., & Yoder, B. K. (2006). The primary cilium in cell signaling and cancer. Cancer research, 66(13), 6463-6467.
Okegawa, T., Pong, R.-C., Li, Y., & Hsieh, J.-T. (2004). The role of cell adhesion molecule in cancer progression and its application in cancer therapy. Acta Biochimica Polonica, 51(2), 445-457.
Pailhé, R. (2017). Innovations relatives à l'évaluation du cartilage articulaire du condyle fémoral humain par une nouvelle modalité d'imagerie optique.
Park, C., Bergsagel, D., & McCulloch, E. (1971). Mouse myeloma tumor stem cells: a primary cell culture assay. Journal of the National Cancer Institute, 46(2), 411-422.
Pizarro-Cerdá, J., & Cossart, P. (2006). Bacterial adhesion and entry into host cells. Cell, 124(4), 715-727.
Ralphs, J., & Benjamin, M. (1994). The joint capsule: structure, composition, ageing and disease. Journal of anatomy, 184(Pt 3), 503.
Ramos, T. V., Mathew, A. J., Thompson, M. L., & Ehrhardt, R. O. (2014). Standardized cryopreservation of human primary cells. Current protocols in cell biology, 64(1), A. 3I. 1-A. 3I. 8.
Schlaermann, P., Toelle, B., Berger, H., Schmidt, S. C., Glanemann, M., Ordemann, J., . . . Meyer, T. F. (2016). A novel human gastric primary cell culture system for modelling Helicobacter pylori infection in vitro. Gut, 65(2), 202-213.
Schnabel, M., Marlovits, S., Eckhoff, G., Fichtel, I., Gotzen, L., Vecsei, V., & Schlegel, J. (2002). Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthritis and Cartilage, 10(1), 62-70.
Schwank, G., Koo, B.-K., Sasselli, V., Dekkers, J. F., Heo, I., Demircan, T., . . . van der Ent, C. K. (2013). Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell stem cell, 13(6), 653-658.
Seol, Y. J., Park, J. Y., Jeong, W., Kim, T. H., Kim, S. Y., & Cho, D. W. (2015). Development of hybrid scaffolds using ceramic and hydrogel for articular cartilage tissue regeneration. Journal of Biomedical Materials Research Part A, 103(4), 1404-1413.
Shan, L., Yang, H.-C., Rabi, S. A., Bravo, H. C., Shroff, N. S., Irizarry, R. A., . . . Siliciano, R. F. (2011). Influence of host gene transcription level and orientation on HIV-1 latency in a primary-cell model. Journal of virology, 85(11), 5384-5393.
Shi, G.-P., & Dolganov, G. M. (2006). Comprehensive transcriptome of proteases and protease inhibitors in vascular cells. Stroke, 37(2), 537-541.
Sophia Fox, A. J., Bedi, A., & Rodeo, S. A. (2009). The basic science of articular cartilage: structure, composition, and function. Sports health, 1(6), 461-468.
Sterodimas, A., de Faria, J., Correa, W. E., & Pitanguy, I. (2009). Tissue engineering and auricular reconstruction: a review. Journal of Plastic, Reconstructive & Aesthetic Surgery, 62(4), 447-452.
Suh, J.-K. F., & Matthew, H. W. (2000). Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials, 21(24), 2589-2598.
Sumigray, K. D., & Lechler, T. (2015). Cell adhesion in epidermal development and barrier formation. In Current topics in developmental biology (Vol. 112, pp. 383-414): Elsevier.
Szekanecz, Z., & Koch, A. E. (2000). Endothelial cells and immune cell migration. Arthritis Research & Therapy, 2(5), 368.
Teixeira, C. C., Nemelivsky, Y., Karkia, C., & Legeros, R. Z. (2006). Biphasic calcium phosphate: a scaffold for growth plate chondrocyte maturation. Tissue engineering, 12(8), 2283-2289.
Thavarajah, R., Mudimbaimannar, V. K., Elizabeth, J., Rao, U. K., & Ranganathan, K. (2012). Chemical and physical basics of routine formaldehyde fixation. Journal of oral and maxillofacial pathology: JOMFP, 16(3), 400.
Wang, J., Fu, W., Zhang, D., Yu, X., Li, J., & Wan, C. (2010). Evaluation of novel alginate dialdehyde cross-linked chitosan/calcium polyphosphate composite scaffolds for meniscus tissue engineering. Carbohydrate polymers, 79(3), 705-710.
Watkins, J. (2009). Pocket Podiatry: Functional Anatomy: Elsevier Health Sciences.
Zhang, S.-x. (1999). An atlas of histology: Springer Science & Business Media.
校內:2025-09-25公開