簡易檢索 / 詳目顯示

研究生: 藍友均
Lan, You-Jun
論文名稱: 仿生循環測試台於全腔靜脈動脈吻合術之血流動力研究
A Mock Loop Investigation of the Hemodynamics of Total Cavopulmonary Connection
指導教授: 陸鵬舉
Lu, Pong-Jeu
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 71
中文關鍵詞: 全腔靜脈肺動脈吻合術體外仿生循環測試台右心輔助器
外文關鍵詞: Total Cavopulmonary Connection, mock circulation loop, right ventricular assist device.
相關次數: 點閱:65下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 針對單一心室心臟缺陷(Single Ventricle Heart Defects, SVHD)的病患,為了改善血流動力以及減少心臟的負荷,Fontan等人提出了緩解性(Palliative)的手術,逐步經由手術而將含氧血與缺氧血分開,其最終階段為全腔靜脈動脈吻合術(Total Cavopulmonary Connection, TCPC),目的是將體、肺循環完全分離。但重建後心房前負載(Preload)不足,上、下腔靜脈回流壓力增高,而導致許多併發症產生,例如:房性心律不整(Atrial Arrhythmias)、肝水腫(Hepatic Congestion)、蛋白質流失症(Protein Losing Enteropathy)等。本研究擬建立一特殊仿生循環測試台以模擬TCPC血流動力特徵,並加入右心輔助器以探討如何改善TCPC血流動力特性。本研究探討右心輔助器在不同的輔助頻率與血泵射血時間點對於上、下腔靜脈與肺循環的血液動力改善功效,並討論最佳的輔助參數設定。實驗結果顯示改變血泵射血時間點,對於輔助成效沒有太大的影響。然而,隨著輔助頻率的增快,靜脈回流壓力隨之降低,而肺動脈、左心房壓力與心輸出量也隨之增加,顯示右心輔助器可有效地改善原本病態的TCPC循環特性。當輔助頻率為100BPM時,靜脈回流壓力降低73%、肺動脈壓力增加40%、左心房壓力增加85%、心輸出量增加了21%。本研究結果證明右心輔助器的置入可減少靜脈回流壓力以及增加肺部灌流壓力,進而增加左心室的前負荷,改善TCPC循環所伴隨的倂發症,使病患回復至正常人的血液循環動力特性。

    SUMMARY
    The hemodynamic characteristics associated with congenital single ventricular heart disease can be improved by the palliative Fontan operation. Despite that total cavopulmonary connection (TCPC) of the Fontan procedure can separate the oxygenated and deoxygenated blood circulation, the elevated venous return pressure and decreased atrial preload may lead to long-term complications including arrhythmias, protein losing enteropathy, hepatic congestion, ventricular dysfunction and diminished exercise capacity, etc. As a result, in order to survive the TCPC-induced complications, the patient must undergo heart transplantation or be implanted with right ventricular assist device (RVAD). To explore the RVAD-intervened TCPC hemodynamic alteration, a mock circulation loop (MCL) has been constructed. In this in-vitro study, we adopted a valved pulsatile blood pump as the RVAD and examined the pressure and flowrate associated with the RVAD-assisted right and left lungs and the atrial preload and cardiac output of the left ventricle. The aim of this investigation is two-fold. First, we explore if RVAD insertion in TCPC flow may recover heart toward the desired bi-ventricular circulation physiology. Second, we would like to decide the critical parameters associated with the RVAD device design. Unlike the systemic counterpulsation support, the assist phase relative to heart rhythm is immaterial to the improvement of venous return pressure decrease and pulmonary circulation renormalization. The results show that the RVAD assist frequency is most influential. For example, with 1:1 assist ratio of the RVAD, the superior vena cava (SVC) and inferior vena cava (IVC) pressures can be decreased 32.8%, pulmonary artery pressure increased 40%, left atrium pressure increased 58.3% and cardiac output increased 17%, indicating that RVAD insertion in the TCPC circuit can bring back the bi-ventricular circulation physiology as expected.

    中文摘要 I 英文延伸摘要 III 致謝 XIV 目 錄 XV 表 目 錄 XVII 圖 目 錄 XVIII 符 號 說 明 XX 第一章 緒論 1 1-1 前言 1 1-2 Fontan手術的改良 2 1-3 Fontan三階段緩解手術 3 1-4 術後併發症 4 1-5 肺循環系統 6 1-6 右心輔助器 6 1-7 研究動機與目的 7 第二章 平台設計與實驗設備 9 2-1 血液動力理論 9 2-2 人工動脈血管 11 2-3 順容 12 2-3-1 彈簧順容 12 2-3-2 針筒順容 13 2-4 阻抗 14 2-5 仿生測試台之實驗設備 14 2-5-1 左心室 14 2-5-2 修正型水母瓣 15 2-5-3 肺阻抗器 15 2-5-4 壓力轉換計 16 2-5-5 超音波流量計 16 2-5-6 驅動系統 16 2-5-7 資料擷取系統 17 第三章 實驗校驗程序與量測步驟 18 3-1 肺阻抗校驗 18 3-2 順容校驗 19 3-3 仿生測試平台架構 19 3-3-1 實驗平台量測點位置 19 3-3-2 實驗平台量測步驟 20 3-4 全腔靜脈動脈術後之生理波形 21 第四章 結果與討論 22 4-1 右心輔助器 22 4-2 血泵在不同射血時間點下的影響 23 第五章 結論與未來工作 25 5-1 結論 25 5-2 未來工作 26 參考文獻 27

    [1] Grigg LE, Ramsay JM, Wheaton GR, Penny DJ, Brizard CP: Surgery for Congenital Heart Disease. Circulation: 157-164, 2007.
    [2] Warnes CA, Williams RG, Bashore TM, et al: Committee to Develop Guidelines on the Management of Adults With Congenital Heart Disease. J Am Coll Cardiol: 52 (23): e143-e263, 2008.
    [3] Gewillig M: The Fontan Circulation. Heart 91 (6): 839-846, 2005.
    [4] De Leval M: The Fontan circulation: What have we learned? What to expect? Pediatric cardiology 19 (4): 316-320, 1998.
    [5] Nayak S, Booker PD: The Fontan circulation. Contin Educ Anaesth Crit Care Pain 8 (1): 26-30, 2008.
    [6] Fontan F, Baudet E: Surgical repair of tricuspid atresia. Thorax 26 (3): 240-248, 1971.
    [7] Kreutzer G, Galindez E, Bono H, De Palma C, Laura J: An operation for the correction of tricuspid atresia. J Thorac Cardiovasc Surg 66 (4): 613-621, 1973.
    [8] de Leval MR, Deanfield JE: Four decades of Fontan palliation. Nat Clin Pract Cardiovasc Med 7 (9): 520-527, 2010.
    [9] de Leval MR, Kilner P, Gewillig M, Bull C: Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations. J Thorac Cardiovasc Surg 96 (5): 682-695, 1988.
    [10] Azakie A, McCrindle BW, Van Arsdell G, et al: Extracardiac conduit versus lateral tunnel cavopulmonary connections at a single institution: impact on outcomes. J Thorac Cardiovasc Surg 122 (6): 1219-1228, 2001 doi: 10.1067/mtc.2001.116947.
    [11] Marcelletti C, Corno A, Giannico S, Marino B: Inferior vena cava-pulmonary artery extracardiac conduit. A new form of right heart bypass. J Thorac Cardiovasc Surg 100 (2): 228-232, 1990.
    [12] Khairy P, Poirier N: Is the extracardiac conduit the preferred Fontan approach for patients with univentricular hearts? Circulation 126 (21): 2516-2525, 2012.
    [13] Rychik J: Forty years of the Fontan operation: a failed strategy, J Thorac Cardiovasc Surg 96-100, 2010.
    [14] de Leval MR: The Fontan circulation: a challenge to William Harvey? Nat Clin Pract Cardiovasc Med 2 (4): 202-208, 2005.
    [15] Choussat A FF, Besse F, et al.: Selection criteria for Fontan’s procedure. Pediatr Cardiol: 559–566., 1978.
    [16] Khairy P, Poirier N, Mercier LA: Univentricular heart. Circulation 115 (6): 800-812, 2007.
    [17] Westerhof N, Elzinga G, Sipkema P: An artificial arterial system for pumping hearts. J Appl Physiol 31 (5): 776-781, 1971.
    [18] Castellana G, Castellana R, Fanelli C, Lamorgese V, Florio C: Pulmonary circulation. Chest 112: 1140-1144, 2006.
    [19] Johnson E, Bennett S, Goetzman B: The influence of pulsatile perfusion on the vascular properties of the newborn lamb lung. Pediatric Research 31 (4 Pt 1): 349-353, 1992.
    [20] Raj JU, Kaapa P, Anderson J: Effect of pulsatile flow on microvascular resistance in adult rabbit lungs. J Appl Physiol 72 (1): 73-81, 1992.
    [21] Dur O, Lara M, Arnold D, et al: Pulsatile in vitro simulation of the pediatric univentricular circulation for evaluation of cardiopulmonary assist scenarios. Artificial organs 33 (11): 967-976, 2009.
    [22] Lacour-Gayet FG, Lanning CJ, Stoica S, et al: An Artificial Right Ventricle for Failing Fontan: In Vitro and Computational Study. Ann Thorac Surg 88 (1): 170-176, 2009
    [23] Haggerty CM, Fynn-Thompson F, McElhinney DB, et al: Experimental and numeric investigation of Impella pumps as cavopulmonary assistance for a failing Fontan. J Thorac Cardiovasc Surg 144 (3): 563-569, 2012.
    [24] Giridharan GA, Koenig SC, Kennington J, et al: Performance evaluation of a pediatric viscous impeller pump for Fontan cavopulmonary assist. J Thorac Cardiovasc Surg 145 (1): 249-257, 2013
    [25] Throckmorton AL, Lopez‐Isaza S, Moskowitz W: Dual‐Pump Support in the Inferior and Superior Vena Cavae of a Patient‐Specific Fontan Physiology. Artificial organs 37 (6): 513-522, 2013.
    [26] Valdovinos J, Shkolyar E, Carman GP, Levi DS: In vitro evaluation of an external compression device for fontan mechanical assistance. Artificial organs 38 (3): 199-207, 2014.
    [27] Almond CS, Morales DL, Blackstone EH, et al: The Berlin Heart EXCOR® Pediatric Ventricular Assist Device for bridge to heart transplantation in US children. Circulation 112.000685, 2013.
    [28] Lamour JM, Kanter KR, Naftel DC, et al: The effect of age, diagnosis, and previous surgery in children and adults undergoing heart transplantation for congenital heart disease. J Am Coll Cardiol 54 (2): 160-165, 2009.
    [29] Milnor WR: Hemodynamics. 1989
    [30] Stergiopulos N, Westerhof BE, Westerhof N: Total arterial inertance as the fourth element of the windkessel model. Am. J. Physiol Heart Circ 276 (1): 81-88, 1999.
    [31] Westerhof N, Bosman F, De Vries CJ, Noordergraaf A: Analog studies of the human systemic arterial tree. J Biomech 2 (2): 121-143, 1969.
    [32] Segers P, Dubois F, De Wachter D, Verdonck P: Role and relevancy of a cardiovascular simulator. Cardiovasc Eng 3: 48-56, 1998.
    [33] Lu P-J, Yang C, Wu M-Y, Hung C-H, Chan M-Y, Hsu T-C: Wave intensity analysis of para-aortic counterpulsation. Am J Physiol Heart Circ Physiol 302 (7): H1481-1491, 2012.
    [34] Dexter L, Dow JW, Haynes FW, et al: Studies of the pulmonary circulation in man at rest. Normal variations and the interrelations between increased pulmonary blood flow, elevated pulmonary arterial pressure, and high pulmonary “capillary” pressures. J Clin Invest 29 (5): 602, 1950.
    [35] Kelley JR, Mack GW, Fahey JT: Diminished venous vascular capacitance in patients with univentricular hearts after the Fontan operation. Am J Cardiol 76 (3): 158-163, 1995.
    [36] Marsden AL, Vignon-Clementel IE, Chan FP, Feinstein JA, Taylor CA: Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection. Ann Biomed Eng 35 (2): 250-263, 2007.
    [37].Marsden AL, Reddy VM, Shadden SC, Chan FP, Taylor CA, Feinstein JA: A new multiparameter approach to computational simulation for Fontan assessment and redesign. Congenital Heart Disease 5 (2): 104-117, 2010.
    [38] Pantalos GM, Ionan C, Koenig SC, et al: Expanded pediatric cardiovascular simulator for research and training. ASAIO Journal 56 (1): 67-72, 2010.
    [39] Baretta A, Corsini C, Yang W, et al: Virtual surgeries in patients with congenital heart disease: a multi-scale modelling test case. Philos. Trans. R. Soc. London, Ser. A 369 (1954): 4316-4330, 2011.
    [40] Giridharan GA, Ising M, Sobieski MA, et al: Cavopulmonary assist for the failing Fontan circulation: impact of ventricular function on mechanical support strategy. ASAIO Journal 60 (6): 707, 2014.
    [41] Evans WN, Acherman RJ, Winn BJ, et al: Fontan hepatic fibrosis and pulmonary vascular development. Pediatric cardiology 36 (3): 657-661, 2015.
    [42] The Royal Children's Hospital Melbourne. Division of Surgery. Cardiology.http://www.rch.org.au/cardiology/heart_defects/Tricuspid_Atresia
    [43] 陳瑞龍, "聚氨酯人工心瓣之製作與性能評估, " 成功大學航空太空工程研究所論文, 2003.
    [44] 陳耀錡, "反脈動主動脈側血泵輔助下冠狀動脈相位流之離體實驗探討, " 成功大學航空太空工程研究所論文, 2012.
    [45] 劉建麟, "反脈動輔助對腦血管循環之影響, " 成功大學航空太空工程研究所論文, 2012.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE