簡易檢索 / 詳目顯示

研究生: 蕭文佑
Seow, Boon-Eu
論文名稱: 應用於積體化頻率合成器前端電路之增強注入鎖定及減緩注入牽引技術
Injection Locking Enhancement and Injection Pulling Mitigation Techniques for Integrated Frequency Synthesizer Front-Ends
指導教授: 黃尊禧
Huang, Tzuen-Hsi
共同指導教授: 莊惠如
Chuang, Huey-Ru
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 98
中文關鍵詞: 注入鎖定注入牽引除三除頻器除五除頻器注入鎖定除頻器注入開關交叉耦合對壓控振盪器蜂巢狀平面電感器頻率合成器毫米波5G行動通信
外文關鍵詞: injection locking, injection pulling, divide-by-three, divide-by-five, injection-locked frequency divider, ILFD, injection-switched cross-coupled pair, IS-CCP, voltage-controlled oscillator, VCO, honeycomb-shaped planar inductor, frequency synthesizer, millimeter-wave, 5G mobile communication
相關次數: 點閱:177下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討兩個主要研究課題。第一個研究課題是注入鎖定增強技術研究應用於CMOS注入鎖定除頻器 (Injection-locked Frequency Divider, ILFD),該技術應用包括30 GHz除三除頻器和50 GHz除五除頻器。 該注入鎖定除頻器可應用於5G行動通信中的28 GHz和47 GHz頻段。第二個研究課題探討新型蜂巢狀平面電感應用於壓控振盪器 (Voltage-Controlled Oscillator, VCO) 的減緩注入牽引技術。
    本論文第二章探討30 GHz注入鎖定除三除頻器電路設計採用注入開關交叉耦合對 (Injection-switched Cross-Coupled Pair, IS-CPP) 可增強鎖定範圍。此創新架構可以實現更寬鎖定範圍以及低電壓操作。該注入鎖定除頻器採用90 nm 標準CMOS製程,此注入除頻器電路設計的總鎖定範圍為4.5 GHz,電源電壓為0.5 V,直流功耗為2.85 mW。緩衝器的直流功耗為2.65 mW,電源電壓為1.0 V. 當30 GHz之輸入參考信號在1 MHz偏移的相位雜訊為 -131 dBc/Hz,量測之輸出相位雜訊為 -141 dBc/Hz。對於除三除頻器,10 dB的相位雜訊差距接近理論值9.5 dB。此注入鎖定除頻器晶片總面積為0.48 mm2,鎖定除頻器面積僅為0.14 mm2。
    使用IS-CCP技術的CMOS 30 GHz注入鎖定除三除頻器也可以操作在除五模式,本論文第三章探討採用IS-CCP技術的該注入鎖定除五除頻器。相關的實驗結果證明了所提出的除頻器也可以作為50 GHz注入鎖定除五除頻器。此50 GHz注入鎖定除五除頻器的總鎖定範圍為2.4 GHz,總直流功耗為5.5 mW。當50 GHz之輸入信號在1 MHz偏移的相位雜訊為 -127 dBc/Hz,量測之輸出相位雜訊為 -143 dBc/Hz。該除頻器可應用於針對47 GHz無線通訊頻帶之毫米波鎖相迴路設計,其中包括新提出的5G行動通信頻段。
    本論文的最後部分探討採用新型蜂巢狀平面電感器應用於壓控振盪器的減緩注入牽引技術。由於所提出的電感器中的特殊繞線佈局,可以補償和減少由附近的電磁雜訊源引起的干擾。透過使用0.18μm標準CMOS製程,所提出的蜂巢狀平面電感器和相近尺寸的傳統單匝螺旋電感器被整合到兩個相應的壓控振盪器測試晶片中,進行研究並比較這兩個壓控振盪器的注入牽引現象。實驗結果證明,與採用相近尺寸的傳統單匝電感器整合之壓控振盪器相比,與所提出的蜂巢狀平面電感器整合之壓控振盪器可以顯著減緩注入牽引現象。在這項研究中,可以實現超過15 dB的減緩注入牽引效果。

    This dissertation covers two main research topics. The first main research topic is to study the injection locking enhancement technique in CMOS injection-locked frequency divider (ILFD), which includes the dual-band operation of 30 GHz divide-by-three and 50 GHz divide-by-five ILFD. The ILFD can be applied to the proposed 28 GHz and 47 GHz frequency bands of the 5G mobile communication. The second main topic is to study the injection pulling mitigation technique in CMOS LC voltage-controlled Oscillator using a novel honeycomb-shaped planar inductor.
    The design of a divide-by-three frequency divider operating at 30 GHz with an injection- switched cross-coupled pair (IS-CPP) technique to enhance the locking range is reported in Chapter 2. A wider locking range as well as a lower operation voltage can be achieved because of this newly proposed topology. The divider is implemented in a 90 nm standard CMOS process. The total locking range of the divider core is 4.5 GHz with a power consumption of 2.85 mW from a supply voltage of 0.5 V. The total power consumption of the buffers is 2.65 mW from a supply voltage of 1.0 V. The measured output phase noise is -141 dBc/Hz at 1 MHz offset when the input referred signal with a phase noise of -131 dBc/Hz at 1 MHz offset from 30 GHz. The phase-noise difference of 10 dB is close to the theoretical value of 9.5 dB for division-by-three. The total chip size is 0.48 mm2 and the divider core size is only about 0.14 mm2.
    A CMOS 30 GHz divide-by-three ILFD using the IS-CCP technique can also operate at a divide-by-5 mode. The related experimental results to demonstrate the extra capability of the proposed divider as a 50 GHz divide-by-five ILFD. The total locking range of 2.4 GHz is available at 50 GHz with a total dc power dissipation of 5.5 mW. The measured output phase noise of -143 dBc/Hz is obtained from an input signal of -127 dBc/Hz at 1 MHz offset from 50 GHz. This divider can be applied to a millimeter-wave PLL design for 47 GHz radio band applications, which include the newly proposed frequency band for the 5G mobile communication.
    The last part of the dissertation presents the injection pulling mitigation technique applied to a voltage controlled oscillator (VCO) using a novel honeycomb-shaped planar inductor. Due to the twisted routes of the sub-coils in the proposed inductor, the interference caused by a nearby electromagnetic noise source can be compensated and reduced. By using a 0.18-μm standard CMOS process, the proposed honeycomb-shaped planar inductor and a conventional single-turn spiral inductor in a similar size are integrated into two respective VCO test chips. The injection pulling behaviors of these two oscillators are studied and compared. The experimental results show that the VCO integrated with the proposed honeycomb-shaped planar inductor can significantly mitigate the injection pulling phenomenon as compared to the VCO integrated with a conventional single-turn inductor in a similar size. In this study, the enhancement of mitigation over 15 dB can be achieved.

    Abstract III Acknowledgement V Contents VI List of Tables VIII List of Figures IX Chapter 1 Introduction 1.1 Motivation and Background 1 1.2 Literature Review 4 1.2.1 Injection-Locking and Pulling 4 1.2.2 Injection Pulling and Phase Noise 7 1.3 Organization of Dissertation 9 Chapter 2 30-GHz CMOS Injection-Locked Frequency Divider Using Injection-Switched Cross-Coupled Pair Technique 2.1 Introduction 11 2.2 Circuit Operation and Design Consideration 14 2.2.1 Circuit Topology and Operation 14 2.2.2 Oscillation Conditions 15 2.2.3 Locking Range Analysis 20 2.2.4 The Proposed Divide-by-3 Circuit and Physical Layout Design 24 2.3 Measurement Results 24 2.3.1 Locking Range Performance 25 2.3.2 Phase Noise Performance 25 2.3.3 Overall Performance 31 2.4 Summary 33 Chapter 3 Dual-Mode 30-/50-GHz Divide-by-3/-5 ILFD Using Injection-Switched Cross-Coupled Pair Technique 3.1 Introduction 35 3.2 Circuit Operation and Design Consideration 36 3.3 Measurement Results 41 3.3.1 Locking Range Performance 41 3.3.2 Phase Noise Performance 46 3.3.3 Overall Performance 46 3.4 Summary 49 Chapter 4 Injection Pulling Mitigation in CMOS LC Voltage-Controlled Oscillator Using a Novel Honeycomb-Shaped Planar Inductor 4.1 Introduction 51 4.2 Oscillator Under Injection Pulling 53 4.3 The Injection Pulling Mitigated Inductor 54 4.3.1 Magnetic-Field Cancellations 54 4.3.2 Magnetic Near-field Analyses 58 4.3.3 Crosstalk Simulation 58 4.4 The Test Chips 60 4.5 Experimental Results 62 4.5.1 Injection Pulling Measurement Results 62 4.5.2 Phase Noise Result 71 4.6 Summary 73 Chapter 5 Conclusion and Recommendation 74 References 76 Appendix 86 List of Publication 98

    [1] “5G Spectrum Recommendations - April 2017”, [Online], Available http://www.5gamericas.org/files/9114/9324/1786/5GA_5G_Spectrum_Recommendations_2017_FINAL.pdf
    [2] J. Craninckx and M. S. J. Steyaert, “A fully integrated CMOS DCS-1800 frequency synthesizer,” IEEE Journal of Solid-State Circuits, vol. 33, no. 12, pp. 2054-2065, Dec. 1998.
    [3] D. Mijuskovic et al., “Cell-based fully integrated CMOS frequency synthesizers,” IEEE Journal of Solid-State Circuits, vol. 29, no. 3, pp. 271-279, Mar. 1994.
    [4] R. L. Miller, “Fractional-frequency generators utilizing regenerative modulation,” Proceedings of the IRE, vol. 27, no. 7, pp. 446-457, Jul. 1939
    [5] L. Tai-Cheng and H. Yen-Chuan, “The design and analysis of a Miller-divider-based clock generator for MBOA-UWB application,” IEEE Journal of Solid-State Circuits, vol. 41, no. 6, pp. 1253-1261, Jun. 2006.
    [6] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE Journal of Solid-State Circuits, vol. 34, no. 6, pp. 813-821, Jun. 1999.
    [7] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE Journal of Solid-State Circuits, vol. 39, no. 7, pp. 1170-1174, Jul. 2004.
    [8] W. Hui and Z. Lin, “A 16-to-18GHz 0.18-m Epi-CMOS divide-by-3 injection-locked frequency divider,” in 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers, Feb. 2006, pp. 2482-2491.
    [9] T. N. Luo, S. Y. Bai, and Y. J. E. Chen, “A 60-GHz 0.13-µm CMOS divide-by-three frequency divider,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 11, pp. 2409-2415, Nov. 2008.
    [10] L. J. Paciorek, “Injection locking of oscillators,” Proceedings of the IEEE, vol. 53, no. 11, pp. 1723-1727, Nov. 1965.
    [11] R. Adler, “A study of locking phenomena in oscillators,” Proceedings of the IRE, vol. 34, no. 6, pp. 351-357, Jun. 1946.
    [12] K. Kurokawa, “Injection locking of microwave solid-state oscillators,” Proceedings of the IEEE, vol. 61, no. 10, pp. 1386-1410, Oct. 1973.
    [13] H. L. Stover, “Theoretical explanation for the output spectra of unlocked driven oscillators,” Proceedings of the IEEE, vol. 54, no. 2, pp. 310-311, Feb. 1966.
    [14] M. Armand, “On the output spectrum of unlocked driven oscillators,” Proceedings of the IEEE, vol. 57, no. 5, pp. 798-799, May 1969.
    [15] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE Journal of Solid-State Circuits, vol. 39, no. 9, pp. 1415-1424, Sep. 2004.
    [16] C. J. M. Verhoeven, “A high-frequency electronically tunable quadrature oscillator,” IEEE Journal of Solid-State Circuits, vol. 27, no. 7, pp. 1097-1100, Jul. 1992.
    [17] A. Rofougaran, J. Rael, M. Rofougaran, and A. Abidi, “A 900 MHz CMOS LC-oscillator with quadrature outputs,” in 1996 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC, Feb. 1996, pp. 392-393.
    [18] K. W. Cheng, K. Natarajan, and D. J. Allstot, “A current reuse quadrature GPS receiver in 0.13 µm CMOS,” IEEE Journal of Solid-State Circuits, vol. 45, no. 3, pp. 510-523, Mar. 2010.
    [19] K. Jae Joon and K. Beomsup, “A low-phase-noise CMOS LC oscillator with a ring structure,” in 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056), Feb. 2000, pp. 430-431.
    [20] F. K. Wang et al., “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 12, pp. 4112-4120, Dec. 2010.
    [21] B. H. Kim et al., “A proximity coupling RF sensor for wrist pulse detection based on injection-locked PLL,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 5, pp. 1667-1676, May 2016.
    [22] B. Razavi, “Mutual injection pulling between oscillators,” in IEEE Custom Integrated Circuits Conference 2006, Sep. 2006, pp. 675-678.
    [23] A. Mirzaei, M. E. Heidari, and A. A. Abidi, “Analysis of oscillators locked by large injection signals: generalized Adler's equation and geometrical interpretation,” in IEEE Custom Integrated Circuits Conference 2006, Sep. 2006, pp. 737-740.
    [24] A. Mirzaei and H. Darabi, “Mutual pulling between two oscillators,” IEEE Journal of Solid-State Circuits, vol. 49, no. 2, pp. 360-372, Feb. 2014.
    [25] A. Mirzaei, M. E. Heidari, R. Bagheri, S. Chehrazi, and A. A. Abidi, “The quadrature LC oscillator: a complete portrait based on injection locking,” IEEE Journal of Solid-State Circuits, vol. 42, no. 9, pp. 1916-1932, Sep. 2007.
    [26] A. Mirzaei and A. A. Abidi, “The spectrum of a noisy free-running oscillator explained by random frequency pulling,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 3, pp. 642-653, Mar. 2010.
    [27] B. E. Seow, W. C. Lai, T. H. Huang, and H. R. Chuang, “Fully integrated 24 GHz CMOS injection-locked VCO with folded Marchand balun,” 2016 IEEE Region 10 Conference (TENCON), Nov. 2016, pp. 2528-2530.
    [28] B. Razavi, RF Microelectronics, 2nd ed., Prentice Hall, Inc., 2012.
    [29] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, no. 2, pp. 329-330, Feb. 1966.
    [30] J. C. Nallatamby, M. Prigent, M. Camiade, and J. Obregon, “Phase noise in oscillators - Leeson formula revisited,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 4, pp. 1386-1394, Apr. 2003.
    [31] J. Craninckx and M. Steyaert, “Low-noise voltage-controlled oscillators using enhanced LC-tanks,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 42, no. 12, pp. 794-804, Dec. 1995.
    [32] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
    [33] P. Andreani, W. Xiaoyan, L. Vandi, and A. Fard, “A study of phase noise in Colpitts and LC-tank CMOS oscillators,” IEEE Journal of Solid-State Circuits, vol. 40, no. 5, pp. 1107-1118, May 2005.
    [34] D. Murphy, J. J. Rael, and A. A. Abidi, “Phase Noise in LC Oscillators: A Phasor-Based Analysis of a General Result and of Loaded Q,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 6, pp. 1187-1203, Jun. 2010.
    [35] C. Samori, A. L. Lacaita, F. Villa, and F. Zappa, “Spectrum folding and phase noise in LC tuned oscillators,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 45, no. 7, pp. 781-790, Jul. 1998.
    [36] A. Demir, A. Mehrotra, and J. Roychowdhury, “Phase noise in oscillators: a unifying theory and numerical methods for characterization,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 47, no. 5, pp. 655-674, May 2000.
    [37] S. L. Jang, C.-W. Tai, and C.-F. Lee, “Divide-by-3 injection locked frequency divider implemented with active inductor,” Microwave Optical Technology Letters, vol. 50, no. 6, pp. 1682–1685, Jun. 2008.
    [38] S. L. Jang, C. F. Lee, and W. H. Yeh, “A divide-by-3 injection locked frequency divider with single-ended input,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 2, pp. 142-144, Feb. 2008.
    [39] K. H. Chien, J. Y. Chen, and H. K. Chiou, “Designs of K-band divide-by-2 and divide-by-3 injection-locked frequency divider with Darlington topology,” IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 9, pp. 2877-2888, Sep. 2015.
    [40] K. W. Cheng and D. J. Allstot, “A gate-modulated CMOS LC quadrature VCO,” in 2009 IEEE Radio Frequency Integrated Circuits Symposium, June 2009, pp. 267-270.
    [41] A. B. Bhattacharyya, Compact MOSFET Models for VLSI Design, Ch.4, pp.159-209, John Wiley & Sons, Inc., 2009.
    [42] Y. L. Yeh and H. Y. Chang, “Design and analysis of a w-band divide-by-three injection-locked frequency divider using second harmonic enhancement technique,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 6, pp. 1617-1625, Jun. 2012.
    [43] S. L. Jang and C. W. Chang, “A 90 nm CMOS LC-tank divide-by-3 injection-locked frequency divider with record locking range,” IEEE Microwave and Wireless Components Letters, vol. 20, no. 4, pp. 229-231, Apr. 2010.
    [44] Y. T. Chen, M. W. Li, H. C. Kuo, T. H. Huang, and H. R. Chuang, “Low-voltage K-band divide-by-3 injection-locked frequency divider with floating-source differential injector,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 1, pp. 60-67, Jan. 2012.
    [45] B. E. Seow, T. H. Huang, C. Y. Wu, P. Y. Pao, and H. R. Chuang, “A low-voltage 30-GHz CMOS divide-by-three ILFD with injection-switched cross-coupled pair technique,” IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 5, pp. 1560-1568, May 2017.
    [46] K. H. Tsai, L. C. Cho, J. H. Wu, and S. I. Liu, “3.5mW W-Band frequency divider with wide locking range in 90nm CMOS technology,” in 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, Feb. 2008, pp. 466-628.
    [47] Y. H. Kuo, J. H. Tsai, H. Y. Chang, and T. W. Huang, “Design and analysis of a 77.3% locking-range divide-by-4 frequency divider,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 10, pp. 2477-2485, Oct. 2011.
    [48] X. Zhang, X. Zhou, and A. S. Daryoush, “A theoretical and experimental study of the noise behavior of subharmonically injection locked local oscillators,” IEEE Transactions on Microwave Theory and Techniques, vol. 40, no. 5, pp. 895-902, May 1992.
    [49] J. Jinho and K. Youngwoo, “V-band high-order harmonic injection-locked frequency-divider MMICs with wide bandwidth and low-power dissipation,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 6, pp. 1891-1898, Jun. 2005.
    [50] P. K. Tsai, T. H. Huang, and Y. H. Pang, “CMOS 40 GHz divide-by-5 injection-locked frequency divider,” Electronics Letters, vol. 46, no. 14, pp. 1003-1004, Jul. 2010.
    [51] M. W. Li, P. C. Wang, T. H. Huang, and H. R. Chuang, “Low-voltage, wide-locking-range, millimeter-wave divide-by-5 injection-locked frequency dividers,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 3, pp. 679-685, Mar. 2012.
    [52] S.-L. Jang, R.-K. Yang, C.-W. Chang, M.-H. Juang, “Multi-modulus LC injection-locked frequency dividers using single-ended injection,” IEEE Microwave Wireless Component Letters, vol. 19, no. 5, pp. 311–313, May 2009.
    [53] Z. Wei, Z. Liang, Z. Xu, Y. Liu, “A dual-modulus injection-locked frequency divider with large locking range”, Microwave and Optical Technology Letters, vol.55, no.2, pp.269, Feb. 2013.
    [54] T.-H. Huang, S.-H. Li, P.-K. Tsai, C.-C. Liu, “Reconfigurable CMOS divide-by-3/-5 injection-locked frequency divider for dual-mode 24/40 GHz PLL application”, in Proc. 2012 IEEE Int. Symposium Radio-Frequency Integration Technology (RFIT), Singapore, 21-23 Nov. 2012, pp. 68-70.
    [55] A. Mirzaei and H. Darabi, “Pulling mitigation in wireless transmitters,” IEEE Journal of Solid-State Circuits, vol. 49, no. 9, pp. 1958-1970, Sep. 2014.
    [56] Bashir, R. B. Staszewski, O. Eliezer, B. Banerjee, and P. T. Balsara, “A novel approach for mitigation of RF oscillator pulling in a polar transmitter,” IEEE Journal of Solid-State Circuits, vol. 46, no. 2, pp. 403-415, Feb. 2011..
    [57] C. H. Hsiao, C. J. Li, F. K. Wang, T. S. Horng, and K. C. Peng, “Analysis and improvement of direct-conversion transmitter pulling effects in constant envelope modulation systems,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 12, pp. 4137-4146, Dec. 2010.
    [58] C. H. Hsiao, C. T. Chen, T. S. Horng, and K. C. Peng, “Design of a direct conversion transmitter to resist combined effects of power amplifier distortion and local oscillator pulling,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 6, pp. 2000-2009, Jun. 2012.
    [59] G. L. Puma, R. Avivi, and C. Carbonne, “Adaptive techniques to mitigate oscillator pulling in radio transmitters,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 2, pp. 121-125, Feb. 2017.
    [60] C. Chuan-Jane, W. Shyh-Chyi, K. Chi-Hung, C. Ming-Jer, L. Len-Yi, and C. Kuang-Yi, “Characterization and modeling of on-chip spiral inductors for Si RFICs,” IEEE Transactions on Semiconductor Manufacturing, vol. 15, no. 1, pp. 19-29, Jan. 2002.
    [61] C. P. Yue and S. S. Wong, “On-chip spiral inductors with patterned ground shields for Si-based RF ICs,” IEEE Journal of Solid-State Circuits, vol. 33, no. 5, pp. 743-752, May 1998.
    [62] S. A. R. A. Mehr, M. Tohidian, and R. B. Staszewski, “Toward solving multichannel rf-soc integration issues through digital fractional division,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 3, pp. 1071-1082, Jun. 2016.
    [63] A. Poon, A. Chang, H. Samavati, and S. S. Wong, “Reduction of inductive crosstalk using quadrupole inductors,” IEEE Journal of Solid-State Circuits, vol. 44, no. 6, pp. 1756-1764, Jun. 2009.
    [64] C. Durand, F. Gianesello, and D. Gloria, “Innovative 8-shaped inductors integrated in an advanced BiCMOS technology,” in 2011 IEEE 11th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Jan. 2011, pp. 81-84.
    [65] J. Kundrata and A. Baric, “EMC-aware design of a planar inductor for low-profile OLED drivers,” IEEE Transactions on Power Electronics, vol. 31, no. 6, pp. 4474-4483, Jun. 2016.
    [66] C. A. Balanis, Antenna Theory: Analysis and Design, 3rd edition, Ch.6, pp.365-369, John Wiley & Sons, Inc., 2005.
    [67] T. H. Huang, S. F. Yang and S. T. Lin “Characterization of a planar honeycomb-based inductor on crosstalk/EMI suppression,” IEEE Transactions on Electromagnetic Compatibility, (Accepted 2018. DOI: 10.1109/TEMC.2018.2828613).
    [68] B. E. Seow, S. T. Lin, T. H. Huang, and H. R. Chuang, “Injection pulling mitigation in cmos voltage controlled oscillator using a novel honeycomb-shaped planar inductor,” IEEE Transactions on Circuits and Systems II: Express Briefs, (Accepted 2018. DOI: 10.1109/TCSII.2018.2826138).
    [69] S. T. Lin, A Novel EMI Suppression Inductor and Its Application to Integrated RF Voltage-Controlled Oscillators, M.Eng. Thesis, Department of Electrical Engineering, National Cheng Kung University, 2017.
    [70] C. Y. Wu, Designs of mm-Wave Oscillation Source for Noncontact Human Vital-Signs Sensing Systems, M.Eng. Thesis, Department of Electrical Engineering, National Cheng Kung University, 2014
    [71] P. H. Wu, J. K. Jau, C. J. Li, T. S. Horng, and P. Hsu, “Phase- and self-injection-locked radar for detecting vital signs with efficient elimination of DC offsets and null points,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 1, pp. 685-695, Jan. 2013.
    [72] C. T. Chung, 24-GHz CMOC PLL-based Radar Sensor Integrated Circuit Design with Injection-locked Technique, M.Eng. Thesis, Department of Electrical Engineering, National Cheng Kung University, 2018.
    [73] J. H. Cheng, J. H. Tsai, and T. W. Huang, “Design of a 90.9% locking range injection-locked frequency divider with device ratio optimization in 90-nm CMOS,” IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 1, pp. 187-197, Jan. 2017.
    [74] A. Liscidini, L. Fanori, P. Andreani, and R. Castello, “A power-scalable DCO for multi-standard GSM/WCDMA frequency synthesizers,” IEEE Journal of Solid-State Circuits, vol. 49, no. 3, pp. 646-656, Mar. 2014.
    [75] E. Hegazi, H. Sjoland, and A. A. Abidi, “A filtering technique to lower LC oscillator phase noise,” IEEE Journal of Solid-State Circuits, vol. 36, no. 12, pp. 1921-1930, Dec. 2001.
    [76] A. Mazzanti and P. Andreani, “Class-C harmonic CMOS VCOs, with a general result on phase noise,” IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2716-2729, Dec. 2008.
    [77] L. Fanori and P. Andreani, “Class-D CMOS oscillators,” IEEE Journal of Solid-State Circuits, vol. 48, no. 12, pp. 3105-3119, Dec. 2013.
    [78] M. Garampazzi et al., “An intuitive analysis of phase noise fundamental limits suitable for benchmarking LC oscillators,” IEEE Journal of Solid-State Circuits, vol. 49, no. 3, pp. 635-645, Mar. 2014.
    [79] M. Babaie and R. B. Staszewski, “A Class-F CMOS oscillator,” IEEE Journal of Solid-State Circuits, vol. 48, no. 12, pp. 3120-3133, Dec. 2013.
    [80] A. Visweswaran, R. B. Staszewski, and J. R. Long, “A low phase noise oscillator principled on transformer-coupled hard limiting,” IEEE Journal of Solid-State Circuits, vol. 49, no. 2, pp. 373-383, Feb. 2014.
    [81] A. Mazzanti and A. Bevilacqua, “On the phase noise performance of transformer-based CMOS differential-pair harmonic oscillators,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 9, pp. 2334-2341, Sep. 2015.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE