簡易檢索 / 詳目顯示

研究生: 呂弘立
Lu, Hong-Li
論文名稱: 合成與天然針鐵礦成份於砷序列萃取技術與砷環境循環之應用
Implications of synthetic and natural goethite compositions on arsenic sequential extraction techniques and environmental cycling
指導教授: 楊懷仁
Yang, Huai-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 90
中文關鍵詞: 針鐵礦連續萃取法地下水砷濃度砷鐵比
外文關鍵詞: arsenic, sequential extraction procedures, iron(III) oxy-hydroxides, goethite, groundwater
相關次數: 點閱:113下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 針鐵礦(α-FeOOH)形成時可以透過共沉澱與吸附的方式富集砷,但在不同的氧化還原環境會溶解或相轉變成其他礦物相造成砷在不同宿主的遷徙,地下水的砷問題與含水層的沉積物息息相關,前人針對孟加拉地區的地下水進行研究,提出地下水的砷來源為含砷的氧氫氧化鐵(FeOOH)溶解。針鐵礦是常見且熱力學穩定的氧氫氧化鐵,過去針鐵礦與砷的實驗大多集中在吸附砷的研究,較少實驗透過與砷共沉澱的針鐵礦探討形成時從水體中擷取砷到其結構中的機制,而且這些實驗沒有仔細討論針鐵礦形成時的砷濃度、酸鹼值與氧化還原電位。本次研究合成三種與砷共沉澱的針鐵礦,並比較自然界的含砷針鐵礦結核樣本,驗證針鐵礦形成時能夠擷取砷到其結構當中或是以吸附的方式附著於表面。合成的針鐵礦樣本由X光繞射分析圖譜鑑定礦物相與結晶度,經由連續萃取法(sequential extraction procedure, SEP)分析結構砷與吸附砷的比例。合成三種不同含砷的針鐵礦分別為Gtnitrate、Gtchloride及Gtsulfate,Gtnitrate是由硝酸鐵混合氫氧化鈉溶液加熱共沉澱合成出結晶度佳的針鐵礦;Gtchloride是由氯化亞鐵混合碳酸氫鈉溶液曝氣共沉澱形成結晶度較差的針鐵礦;Gtsulfate是由硫酸亞鐵混合碳酸氫鈉溶液曝氣共沉澱形成結晶度較差的針鐵礦與纖鐵礦的混合物。Gtnitrate、Gtchloride及Gtsulfate在初始砷濃度為0.1、0.5、1、10、50 mg/L的環境共沉澱後,經SEP分析所有含砷樣本,有80%以上的共沉澱砷,與天然的針鐵礦結核擷取砷的方式一致,此結果證實從地下水體共沉澱出的針鐵礦主要以共沉澱的方式擷取砷。
    Gtchloride及Gtsulfate與砷共澱後,上清液為中性,兩者對砷的移除率皆為100%;而Gtnitrate共沉澱後上清液呈鹼性,隨著砷濃度越高,砷移除率下降。從系統為中性或鹼性的差異,推論Gtnitrate形成時,氫氧根(OH-)濃度過高,導致Gtnitrate的前驅物硝酸鐵中的三價鐵(Fe3+)與氫氧根快速結合,形成結晶度極佳的針鐵礦,使Gtnitrate擷取砷到結構中的能力有限,造成砷濃度越高移除率下降,殘留在液體當中的砷也因為氫氧根濃度過高,使Gtnitrate無法以吸附的方式移除液體中殘留的砷。Gtchloride與Gtsulfate的前驅物分別為氯化亞鐵以及硫酸亞鐵,鹼液為碳酸氫鈉,碳酸氫根與水反應形成氫氧根,但濃度不高,兩價的亞鐵離子(Fe2+)在此系統中先形成混合價態前驅物綠鏽。綠鏽對於砷的移除能力極佳,綠鏽擷取砷後,完全氧化成Gtchloride及Gtsulfate的過程中仍將砷留在結晶結構當中。Gtchloride為100%針鐵礦,但綠鏽轉變為FeOOH的過程中可能會形成纖鐵礦(γ-FeOOH),Gtsulfate為纖鐵礦與針鐵礦混合的礦物相。
    計算SEP分析Gtnitrate、Gtchloride與Gtsulfate針對鐵氫氧化物目標相萃取液砷與鐵的比例,了解當多少量的含砷針鐵礦還原溶解造成定體積水體砷濃度增加至與地下水體砷濃度相符,進一步由砷與鐵的比例推測天然的含砷針鐵礦結核的形成機制。將地下水砷濃度高區域的沉積物連續萃取實驗針對鐵氫氧化物目標相的砷濃度與砷鐵比作圖,並加入本研究Gtchloride與Gtnitrate的萃取結果,進一步判斷沉積物當中不同結晶度含砷針鐵礦的貢獻。
    由過去所量測地下水資料的陰陽離子、酸鹼值、氧化還原電位、溫度,建立出針鐵礦在不同環境中溶解或沉澱,釋放或擷取砷的機制。並比較砷問題嚴重的地區中地下水砷、鐵濃度與氧化還原電位的關係,釐清針鐵礦還原溶解造成地下水砷濃度的增加的機制。

    Goethite (α-FeOOH) has been commonly recognized as an arsenic host that contributes to groundwater arsenic budget by reductive dissolution (e.g., Nickson et al., 2000; McArthur et al., 2001). However, goethite can incorporate arsenic during its precipitation and subsequently adsorb arsenic after its formation. Hence, the relative contribution of co-precipitated and adsorbed arsenic remains unsolved because most of the experimental constraints were on the adsorption species. Moreover, the few goethite-arsenic co-precipitation experiments did not explore the effects of the variations of system arsenic concentration and pH condition during the goethite formation. In this study, goethite powders were synthesized from three solutions with initial arsenic concentrations [As]i of 0, 0.1, 0.5, 1, 10, 50 ppm. The three synthesized arsenic-containing goethite samples were labeled as Gtnitrate, Gtsulfate, and Gtchloride, representing well-crystallized goethite from iron(III) nitrate, poor crystalline goethite and lepidocrocite from iron(II) sulfate, and poor crystalline goethite from iron(II) chloride, respectively. These experimentally produced goethite samples were analyzed with the sequential extraction procedure (SEP) modified from Wenzel et al. (2001) and Keon et al. (2001) to evaluate the selectivity of the extraction reagents. Then, the compositions of these samples, mainly the co-precipitated arsenic abundance and As/Fe ratio, were compared to those of natural arsenic-bearing goethite nodules from the Ernjen River in the Chianan Plain and the goethite crust from the Paoli River in Pingtung, southern Taiwan to infer the formation mechanisms of these natural goethite.
    The results showed that most of the arsenic (over 80%) was incorporated into the structure of synthetic goethite during its formation, consistent with the results from the natural goethite nodules. The modified sequential extraction procedure (SEP) demonstrated excellent extraction selectivity on goethite. The ammonium dihydrogen phosphate extraction effectively extracted adsorbed arsenic without dissolving iron. The oxalic acid and ascorbic acid extractions were consistent with the XRD results, reflecting the varying crystallinity of goethite. The arsenic solid/liquid partition coefficients of Gtchloride and Gtsulfate were relatively high, ranging from 806 to 1719, and they showed no correlation with the [As]i, implying attainment of arsenic equilibrium between the solid and liquid phases. For Gtnitrate, the arsenic solid/liquid partition coefficients ranged from 26 to 151, and they decreased with increasing initial arsenic concentrations, indicating that higher arsenic concentrations make it more difficult for arsenic to enter the solid phase. The goethite nodules from Ernjen River exhibited higher As/Fe ratios compared to the goethite crust from Paoli River. By comparing these ratios with the [As]i values of the Gtchloride in this study, it can be inferred that the formation of goethite with high As/Fe ratios required elevated local arsenic concentrations, possibly derived from arsenic-bearing minerals such as iron sulfides. The As/Fe ratio provides insights into the formation mechanism of naturally occurring arsenic-bearing goethite. By considering the documented groundwater composition data, we inferred the state of goethite (dissolution or precipitation) to further predict its arsenic release potential in various environmental systems.

    中文摘要 I Abstract III 誌謝 V Contents VI List of Tables IX List of Figures XI Chapter 1. Introduction and Objectives 1 1.1. The sources of arsenic 1 1.2. The formation of goethite and arsenic incorporation mechanisms 2 1.3. Objectives 4 Chapter 2. Materials 5 2.1. Goethite synthesized from mixing iron(III) nitrate and sodium hydroxide (Gtnitrate) 5 2.2. Goethite synthesized from mixing iron(II) chloride and sodium bicarbonate (Gtchloride) 6 2.3. Goethite synthesized from mixing iron(II) sulfate and sodium bicarbonate (Gtsulfate) 7 Chapter 3. Methods 8 3.1. Solid phase characterization 8 3.1.1. X-ray diffraction (XRD) 8 3.1.2. Fourier-transform infrared measurements (FTIR) 8 3.2. Specific surface area (SSA) 8 3.3. Arsenic sequential extraction procedures (SEP) 9 3.4. Q-ICP-MS analysis 11 Chapter 4. Results 12 4.1. Solid phase characterization 12 4.1.1. XRD patterns for Gtsulfate and Gtchloride 12 4.1.2. XRD patterns for Gtnitrate and Gtchloride 15 4.1.3. FTIR results for Gtnitrate 17 4.2. BET results 18 4.3. Arsenic sorbed amount and removal efficiency results 19 4.4. SEP results 20 4.4.1. Gtsulfate SEP 20 4.4.2. Gtchloride SEP 26 4.4.3. Gtnitrate SEP 32 Chapter 5. Discussion 43 5.1. Constraints from synthesized goethite on the selectivity of reagents for arsenic SEP 43 5.2. Arsenic incorporation mechanisms in synthesized FeOOH 46 5.2.1. Gtsulfate and Gtchloride formation: arsenic removal by poorly crystalline FeOOH 46 5.2.2. Limitations of arsenic removal efficiency by Gtnitrate 48 5.2.3. Impact of high arsenic concentration on iron oxyhydroxides crystallinity 51 5.3. Derivation of arsenic partition coefficient between goethite and fluids 53 5.4. The As/Fe ratio of goethite and arsenic enrichment in groundwater 59 5.4.1. Calculation the As/Fe weight ratio for goethite 59 5.4.2. Applications As/Fe ratios from extractions of FeOOH 64 5.4.3. Application of goethite with different As/Fe ratios for sediments arsenic SEP 66 5.5. Inference from synthetic FeOOH on the formation mechanism of natural goethite 68 5.5.1. The crystallinity of natural arsenic-rich goethite nodules and synthetic goethite 72 5.5.2. Natural goethite from the Red River Delta, Vietnam 74 5.5.3. Natural goethite nodules in Gräfenberg, Bavaria, Germany 75 5.6. Stability of goethite Eh-pH plot and its implications for groundwater systems 76 5.6.1. The stability and transformation of goethite 76 5.6.2. Groundwater arsenic concentration in Beimen, Tainan 78 5.6.3. Arsenic release from goethite and water arsenic concentration 80 Chapter 6. Conclusions 81 References 82

    Ahmad, Arslan. Arsenic removal by iron based co-precipitation: mechanisms in groundwater treatment. Diss. Wageningen University and Research, 2020.
    Ahmed, K. M., Bhattacharya, P., Hasan, M. A., Akhter, S. H., Alam, S. M., Bhuyian, M. H., ... & Sracek, O. Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: an overview. Applied Geochemistry, 19(2), 181-200, 2004.
    Alarcón, R., Gaviria, J., & Dold, B. Liberation of adsorbed and co-precipitated arsenic from jarosite, schwertmannite, ferrihydrite, and goethite in seawater. Minerals, 4(3), 603-620, 2014.
    Antelo, J., Avena, M., Fiol, S., López, R., & Arce, F. Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite–water interface. Journal of colloid and interface science, 285(2), 476-486, 2005.
    Asta, M. P., Cama, J., Martínez, M., & Giménez, J. Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. Journal of Hazardous Materials, 171(1-3), 965-972, 2009.
    Banning, A., & Rüde, T. R. Enrichment processes of arsenic in oxidic sedimentary rocks–From geochemical and genetic characterization to potential mobility. Water research, 44(19), 5512-5531, 2010.
    BGS and DPHE, Arsenic contamination of groundwater in Bangladesh. Kinniburgh, D G and Smedley, P L (Editors). British Geological Survey Technical Report WC/00/19. British Geological Survey: Keyworth, 2001.
    Bigham, J. M., & Cravotta, C. A. Acid mine drainage, 2016.
    Bowell, R. J. Sorption of arsenic by iron oxides and oxyhydroxides in soils. Applied geochemistry, 9(3), 279-286, 1994.
    Candeias, C., Ferreira da Silva, E., Salgueiro, A. R., Pereira, H. G., Reis, A. P., Patinha, C., ... & Ávila, P. H. The use of multivariate statistical analysis of geochemical data for assessing the spatial distribution of soil contamination by potentially toxic elements in the Aljustrel mining area (Iberian Pyrite Belt, Portugal). Environmental Earth Sciences, 62, 1461-1479, 2011.
    Chung, W. A. Constraints from the land and off-shore iron nodules and magnetic extracts in SW Taiwan sediments on arsenic cycling. NCKU Electronic Theses & Dissertations, R.O.C, 2020.
    Dantas, R. C., Hassan, M. B., Cruz, F. W., & Jovane, L. Evidence for methane seepage in South Atlantic from the occurrence of authigenic gypsum and framboidal pyrite in deep-sea sediments. Marine and Petroleum Geology, 142, 105727, 2022.
    Dixit, S., & Hering, J. G. Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: implications for arsenic mobility. Environmental science & technology, 37(18), 4182-4189, 2003.
    Dixit, S., & Hering, J. G. Sorption of Fe (II) and As (III) on goethite in single-and dual-sorbate systems. Chemical geology, 228(1-3), 6-15, 2006.
    Fendorf, S., Eick, M. J., Grossl, P., & Sparks, D. L. Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environmental science & technology, 31(2), 315-320, 1997.
    Fu, D., Keech, P. G., Sun, X., & Wren, J. C. Iron oxyhydroxide nanoparticles formed by forced hydrolysis: dependence of phase composition on solution concentration. Physical Chemistry Chemical Physics, 13(41), 18523-18529, 2011.
    Gao, Y., & Mucci, A. Acid base reactions, phosphate and arsenate complexation, and their competitive adsorption at the surface of goethite in 0.7 M NaCl solution. Geochimica et Cosmochimica Acta, 65(14), 2361-2378, 2001.
    Ghosh, M. K., Poinern, G. E. J., Issa, T. B., & Singh, P. Arsenic adsorption on goethite nanoparticles produced through hydrazine sulfate assisted synthesis method. Korean Journal of Chemical Engineering, 29, 95-102, 2012.
    Giménez, J., Martínez, M., de Pablo, J., Rovira, M., & Duro, L. Arsenic sorption onto natural hematite, magnetite, and goethite. Journal of hazardous materials, 141(3), 575-580, 2007.
    Gräfe, M., Nachtegaal, M., & Sparks, D. L. Formation of metal− arsenate precipitates at the goethite− water interface. Environmental science & technology, 38(24), 6561-6570, 2004.
    Gräfe, M., & Sparks, D. L. Kinetics of zinc and arsenate co-sorption at the goethite–water interface. Geochimica et Cosmochimica Acta, 69(19), 4573-4595, 2005.
    Gräfe, M., Beattie, D. A., Smith, E., Skinner, W. M., & Singh, B. Copper and arsenate co-sorption at the mineral–water interfaces of goethite and jarosite. Journal of Colloid and Interface Science, 322(2), 399-413, 2008.
    Grossl, P. R., & Sparks, D. L. Evaluation of contaminant ion adsorption/desorption on goethite using pressure jump relaxation kinetics. Geoderma, 67(1-2), 87-101, 1995.
    Guilbaud, R., White, M. L., & Poulton, S. W. Surface charge and growth of sulphate and carbonate green rust in aqueous media. Geochimica et Cosmochimica Acta, 108, 141-153, 2013.
    Hass, A., & Fine, P. Sequential selective extraction procedures for the study of heavy metals in soils, sediments, and waste materials—a critical review. Critical Reviews in Environmental Science and Technology, 40(5), 365-399, 2010.
    Hou, J., Tan, X., Xiang, Y., Zheng, Q., Chen, C., Sha, Z., ... & Tan, W. Insights into the underlying effect of Fe vacancy defects on the adsorption affinity of goethite for arsenic immobilization. Environmental Pollution, 314, 120268, 2022.
    Jolivet, J. P., Chanéac, C., & Tronc, E. Iron oxide chemistry. From molecular clusters to extended solid networks. Chemical communications, (5), 481-483, 2004.
    Jönsson, J., & Sherman, D. M. Sorption of As (III) and As (V) to siderite, green rust (fougerite) and magnetite: Implications for arsenic release in anoxic groundwaters. Chemical Geology, 255(1-2), 173-181, 2008.
    Kaste, J. M., Friedland, A. J., & Stürup, S. Using stable and radioactive isotopes to trace atmospherically deposited Pb in montane forest soils. Environmental Science & Technology, 37(16), 3560-3567, 2003.
    Keon, N. E., Swartz, C. H., Brabander, D. J., Harvey, C., & Hemond, H. F. Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Environmental Science & Technology, 35(13), 2778-2784, 2001.
    Kirk Nordstrom, D. Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. Acid sulfate weathering, 10, 37-56, 1982.
    Klyukin, K., Rosso, K. M., & Alexandrov, V. Iron dissolution from goethite (α-FeOOH) surfaces in water by ab initio enhanced free-energy simulations. The Journal of Physical Chemistry C, 122(28), 16086-16091, 2018.
    Kosmulski, M., Durand-Vidal, S., Mączka, E., & Rosenholm, J. B. Morphology of synthetic goethite particles. Journal of colloid and interface science, 271(2), 261-269, 2004.
    Lakshmipathiraj, P., Narasimhan, B. R. V., Prabhakar, S., & Raju, G. B. Adsorption of arsenate on synthetic goethite from aqueous solutions. Journal of Hazardous Materials, 136(2), 281-287, 2006.
    Larese-Casanova, P., Haderlein, S. B., & Kappler, A. Biomineralization of lepidocrocite and goethite by nitrate-reducing Fe (II)-oxidizing bacteria: effect of pH, bicarbonate, phosphate, and humic acids. Geochimica et Cosmochimica Acta, 74(13), 3721-3734, 2010.
    Liu, F., De Cristofaro, A., & Violante, A. Effect of pH, phosphate and oxalate on the adsorption/desorption of arsenate on/from goethite. Soil Science, 166(3), 197-208, 2001.
    Luxton, T. P., Eick, M. J., & Rimstidt, D. J. The role of silicate in the adsorption/desorption of arsenite on goethite. Chemical Geology, 252(3-4), 125-135, 2008.
    Mamindy-Pajany, Y., Hurel, C., Marmier, N., & Roméo, M. Arsenic adsorption onto hematite and goethite. Comptes Rendus Chimie, 12(8), 876-881, 2009.
    Mamindy-Pajany, Y., Hurel, C., Marmier, N., & Roméo, M. Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: effects of pH, concentration and reversibility. Desalination, 281, 93-99, 2011.
    Manning, B. A., Fendorf, S. E., & Goldberg, S. Surface structures and stability of arsenic (III) on goethite: spectroscopic evidence for inner-sphere complexes. Environmental science & technology, 32(16), 2383-2388, 1998.
    McArthur, J. M., Ravenscroft, P., Safiulla, S., & Thirlwall, M. F. Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resources Research, 37(1), 109-117, 2001.
    Moncur, M. C., Jambor, J. L., Ptacek, C. J., & Blowes, D. W. Mine drainage from the weathering of sulfide minerals and magnetite. Applied Geochemistry, 24(12), 2362-2373, 2009.
    Mohapatra, B. K., Jena, S., Mahanta, K., & Mishra, P. Goethite morphology and composition in banded iron formation, Orissa, India. Resource geology, 58(3), 325-332, 2008.
    Moreira, R. F., Vandresen, S., Luiz, D. B., José, H. J., & Puma, G. L. Adsorption of arsenate, phosphate and humic acids onto acicular goethite nanoparticles recovered from acid mine drainage. Journal of environmental chemical engineering, 5(1), 652-659, 2017.
    Nath, B., Jean, J. S., Lee, M. K., Yang, H. J., & Liu, C. C. Geochemistry of high arsenic groundwater in Chia-Nan plain, Southwestern Taiwan: possible sources and reactive transport of arsenic. Journal of Contaminant Hydrology, 99(1-4), 85-96, 2008.
    Neretin, L. N., Böttcher, M. E., Jørgensen, B. B., Volkov, I. I., Lüschen, H., & Hilgenfeldt, K. Pyritization processes and greigite formation in the advancing sulfidization front in the Upper Pleistocene sediments of the Black Sea. Geochimica et Cosmochimica Acta, 68(9), 2081-2093, 2004.
    Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G., & Ahmed, K. M. Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied geochemistry, 15(4), 403-413, 2000.
    Ona-Nguema, G., Morin, G., Juillot, F., Calas, G., & Brown, G. E. EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite. Environmental science & technology, 39(23), 9147-9155, 2005.
    Park, J. H., Han, Y. S., & Ahn, J. S. Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream. Water Research, 106, 295-303, 2016.
    Prasad, P. S. R., Prasad, K. S., Chaitanya, V. K., Babu, E. V. S. S. K., Sreedhar, B., & Murthy, S. R. In situ FTIR study on the dehydration of natural goethite. Journal of Asian Earth Sciences, 27(4), 503-511, 2006.
    Randall, S. R., Sherman, D. M., & Ragnarsdottir, K. V. Sorption of As (V) on green rust (Fe4(II)Fe2(III)(OH)12SO4·3H2O) and lepidocrocite (γ-FeOOH): Surface complexes from EXAFS spectroscopy. Geochimica et Cosmochimica Acta, 65(7), 1015-1023, 2001.
    Raven, K. P., Jain, A., & Loeppert, R. H. Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes. Environmental science & technology, 32(3), 344-349, 1998.
    Repo, E., Mäkinen, M., Rengaraj, S., Natarajan, G., Bhatnagar, A., & Sillanpää, M. Lepidocrocite and its heat-treated forms as effective arsenic adsorbents in aqueous medium. Chemical Engineering Journal, 180, 159-169, 2012.
    Ruan, H. D., Frost, R. L., & Kloprogge, J. T. The behavior of hydroxyl units of synthetic goethite and its dehydroxylated product hematite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 57(13), 2575-2586, 2001.
    Sengupta, S., Sracek, O., Jean, J. S., Yang, H. J., Wang, C. H., Kar, S., ... & Das, S. Difference in attenuation among Mn, As, and Fe in riverbed sediments. Journal of hazardous materials, 341, 277-289, 2018.
    Schwertmann, U., & Cornell, R. M. Iron Oxides in the Laboratory: Preparation and Characterization. John Wiley & Sons, 2000.
    Smedley, P. L., & Kinniburgh, D. G. A review of the source, behaviour and distribution of arsenic in natural waters. Applied geochemistry, 17(5), 517-568, 2002.
    Stachowicz, M., Hiemstra, T., & Van Riemsdijk, W. H. Arsenic− bicarbonate interaction on goethite particles. Environmental science & technology, 41(16), 5620-5625, 2007.
    Stachowicz, M., Hiemstra, T., & van Riemsdijk, W. H. Multi-competitive interaction of As (III) and As (V) oxyanions with Ca2+, Mg2+, PO43−, and CO32− ions on goethite. Journal of Colloid and Interface Science, 320(2), 400-414, 2008.
    van der Zee, C., Roberts, D. R., Rancourt, D. G., & Slomp, C. P. Nano goethite is the dominant reactive oxyhydroxide phase in lake and marine sediments. Geology, 31(11), 993-996, 2003.
    Villacís-García, M., Ugalde-Arzate, M., Vaca-Escobar, K., Villalobos, M., Zanella, R., & Martínez-Villegas, N. Laboratory synthesis of goethite and ferrihydrite of controlled particle sizes. Boletín de la Sociedad Geológica Mexicana, 67(3), 433-446, 2015.
    Waltham, C. A., & Eick, M. J. Kinetics of arsenic adsorption on goethite in the presence of sorbed silicic acid. Soil Science Society of America Journal, 66(3), 818-825, 2002.
    Wang, Y., Xu, J., Zhao, Y., Zhang, L., Xiao, M., & Wu, F. Photooxidation of arsenite by natural goethite in suspended solution. Environmental Science and Pollution Research, 20, 31-38, 2013.
    Wang, L., & Giammar, D. E. Effects of pH, dissolved oxygen, and aqueous ferrous iron on the adsorption of arsenic to lepidocrocite. Journal of colloid and interface science, 448, 331-338, 2015.
    Wang, Y., Morin, G., Ona-Nguema, G., Menguy, N., Juillot, F., Aubry, E., ... & Brown Jr, G. E. Arsenite sorption at the magnetite–water interface during aqueous precipitation of magnetite: EXAFS evidence for a new arsenite surface complex. Geochimica et Cosmochimica Acta, 72(11), 2573-2586, 2008.
    Waychunas, G. A., Fuller, C. C., Rea, B. A., & Davis, J. A. Wide angle X-ray scattering (WAXS) study of “two-line” ferrihydrite structure: Effect of arsenate sorption and counterion variation and comparison with EXAFS results. Geochimica et Cosmochimica Acta, 60(10), 1765-1781, 1996.
    Wenzel, W. W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., & Adriano, D. C. Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica chimica acta, 436(2), 309-323, 2001.
    World Health Organization. Guidelines for drinking-water quality. World Health Organization, 2002.
    Xie, X., Wang, Y., Su, C., Liu, H., Duan, M., & Xie, Z. Arsenic mobilization in shallow aquifers of Datong Basin: Hydrochemical and mineralogical evidences. Journal of Geochemical Exploration, 98(3), 107-115, 2008.
    Xiu, W., Yu, X., Guo, H., Yuan, W., Ke, T., Liu, G., ... & Dong, H. Facilitated arsenic immobilization by biogenic ferrihydrite-goethite biphasic Fe (III) minerals (Fh-Gt Bio-bi-minerals). Chemosphere, 225, 755-764, 2019.
    Zamiri, R., Ahangar, H. A., Zakaria, A., Zamiri, G., Bahari, H. R., & Drummen, G. P. Hydrothermal synthesis of goethite (α-FeOOH) nanorods in the presence of ethylenediamine: thiourea. Journal of nanoparticle research, 16, 1-10, 2014.
    Zhang, T., Zhao, Y., Kang, S., Li, Y., & Zhang, Q. Formation of active Fe (OH) 3 in situ for enhancing arsenic removal from water by the oxidation of Fe (II) in air with the presence of CaCO3. Journal of Cleaner Production, 227, 1-9, 2019.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE