| 研究生: |
林真毅 Lin, Jen-Yi |
|---|---|
| 論文名稱: |
以鎳傳輸式化學氣相沉積法合成矽化鎳奈米線之成長與特性研究 Growth and Characterization of Nickel Silicide Nanowires by Nickel Transported CVD |
| 指導教授: |
呂國彰
Lu, Kuo-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 矽化鎳 、奈米線 、化學氣相沉積法 、場發射 、鐵磁性 |
| 外文關鍵詞: | nickel silicide, nanowire, CVD, field emission, ferromagnetic |
| 相關次數: | 點閱:92 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用氯化鎳水合物(NiCl2‧6H2O)做為前驅物,以鎳傳輸式化學氣相沉積法於矽基板上合成矽化鎳奈米線,並觀察與研究矽化鎳奈米線於不同溫度、氣壓、生長時間、前驅物質量與矽基板方向等製程參數下之變化。實驗於溫度750°C、850°C、950°C時分別成長出包覆二氧化矽殼層之單晶Ni31Si12、Ni2Si、NiSi2等相,並於溫度降至400°C時可形成包覆二氧化矽殼層之單晶純鎳相。氣壓則與奈米線徑成正相關。由不同參數之影響推測奈米線成長之機制為V-S成長機制,奈米線形貌之生成取決於過飽和度之控制,其相變化則不同於一般矽傳輸之製程,反由矽原子於鎳原子中之擴散速率所控制。本研究亦分別對生成之奈米線進行場發射特性與磁特性之量測。場發射量測結果顯示,Ni31Si12、Ni2Si、NiSi2場增強因子分別為4097、4561、2476,起始電場分別為2.39V/μm、2.28 V/μm、2.64 V/μm,具有十分優秀之場發射特性,推測與其陣列式分佈與高密度奈米線叢聚成同方向之錐狀形貌有關。磁性量測結果顯示,富鎳相Ni31Si12及Ni2Si具有鐵磁性材料之特性,NiSi2則具有反磁性材料之特性,其原因應與單位體積下之鎳原子含量相關。
Single crystalline NiSi2, Ni2Si, Ni31Si12 and Ni nanowire arrays coated with amorphous silicon dioxide were synthesized with high quantity by nickel transported chemical vapor deposition (CVD) method. Nickel (II) chloride hexahydrate (NiCl2•6H2O) was utilized as a single-source precursor and reacted with silicon substrate. The morphological changes with various reaction temperatures, ambient pressure and reaction time, were observed and studied, respectively. A plausible new growth mechanism via silicon diffusion in nickel was carry out by the observation of pure Ni nanowires grown at 400°C and the consumption of Si substrates. At 750°C and 850°C, cone-shaped nanowire arrays were formed composed of dense and oriented Ni31Si12 and Ni2Si nanowires with length over 60μm. Field emission measurements show that the turn-on field of the as-grown NiSi2, Ni2Si and Ni31Si12 nanowires were about 2.64V/μm, 2.28V/μm and 2.39V/μm, respectively. The field enhancement factor was measured to be 2476, 4561 and 4097, respectively, which is of potential applications as nanoscale field emitters. Moreover, ferromagnetic properties of Ni2Si and Ni31Si12 nanowire arrays were measured at low temperature, which provides diverse options in the use of biological materials.
1. Leong, D., M. Harry, K.J. Reeson, and K.P. Homewood, A silicon/iron-disilicide lightemitting diode operating at a wavelength of 1.5um. Nature, 1997. 387: p. 686-688.
2. Bost, M.C. and J.E. Mahan, An investigation of the optical constants and band gap of chromium disilicide. J. Appl. Phys., 1987. 63: p. 839-844.
3. Derrien, J., J. Chevrier, V. Lethanh, and J.E. Mahan, Semiconducting silicide-silicon heterostructures growth, properties and applications. Applied Surface Science, 1992. 56: p. 382-393.
4. Fukuzawa, Y., T. Ootsuka, N. Otogawa, H. Abe, Y. Nakayama, and Y. Makita, Characterization of B-FeSi2 Films as a novel solar cell semiconductor. P. Soc. Photo-Opt. Inst., 2006. 6197.
5. Senthilarasu, S., R. Sathyamoorthy, and S. Lalitha, Synthesis and characterization of beta-FeSi2 grown by thermal annealing of Fe/Si bilayers for photovoltaic applications. Solar Energy Materials and Solar Cells, 2004. 82(1-2): p. 299-305.
6. Chen, L.J., Silicide Technology for Integrated Circuits. 2004, London, UK: The Institution of Electrical Engineers.
7. Maszara, W.P., Fully silicided metal gates for high-performance CMOS technology: A review. J. Electrochem. Soc., 2005. 152: p. G550-G555.
8. Zhang, S.L. and M. Ostling, Metal silicides in CMOS technology: Past, present, and future trends. Crit. Rev. Solid State Mat. Sci., 2003. 28: p. 1-129.
9. Zhang, S.L. and U. Smith, Self-aligned silicides for ohmic contacts in complementary metal-oxide-semiconductor technology: TiSi2, CoSi2 and NiSi. Journal of Vacuum Science & Technology A, 2004. 22(4): p. 1361-1370.
10. Song, Y.P., A.L. Schmitt, and S. Jin, Ultralong single-crystal metallic Ni2Si nanowires with low resistivity. Nano Letters, 2007. 7(4): p. 965-969.
11. Wu, Y., J. Xiang, C. Yang, W. Lu, and C.M. Lieber, Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature, 2004. 430(6995): p. 61-65.
12. Lu, K.C., W.W. Wu, H.W. Wu, C.M. Tanner, J.P. Chang, L.J. Chen, and K.N. Tu, In situ control of atomic-scale Si layer with huge strain in the nanoheterostructure NiSi/Si/NiSi through point contact reaction. Nano Letters, 2007. 7(8): p. 2389-2394.
13. Weber, W.M., L. Geelhaar, A.P. Graham, E. Unger, G.S. Duesberg, M. Liebau, W. Pamler, C. Cheze, H. Riechert, P. Lugli, and F. Kreupl, Silicon-nanowire transistors with intruded nickel-silicide contacts. Nano Letters, 2006. 6(12): p. 2660-2666.
14. Liu, Z.H., H. Zhang, L. Wang, and D.R. Yang, Controlling the growth and field emission properties of silicide nanowire arrays by direct silicification of Ni foil. Nanotechnology, 2008. 19(37): p. 4.
15. Kim, J., E.S. Lee, C.S. Han, Y. Kang, D. Kim, and W.A. Anderson, Observation of Ni silicide formations and field emission properties of Ni silicide nanowires. Microelectronic Engineering, 2008. 85(8): p. 1709-1712.
16. Chueh, Y.L., L.J. Chou, S.L. Cheng, L.J. Chen, C.J. Tsai, C.M. Hsu, and S.C. Kung, Synthesis and characterization of metallic TaSi2 nanowires. Applied Physics Letters, 2005. 87(22): p. 3.
17. Chueh, Y.L., M.T. Ko, L.J. Chou, L.J. Chen, C.S. Wu, and C.D. Chen, TaSi2 nanowires: A potential field emitter and interconnect. Nano Letters, 2006. 6(8): p. 1637-1644.
18. Lin, H.K., Y.F. Tzeng, C.H. Wang, N.H. Tai, I.N. Lin, C.Y. Lee, and H.T. Chiu, Ti5Si3 nanowire and its field emission property. Chemistry of Materials, 2008. 20(7): p. 2429-2431.
19. Xiang, B., Q.X. Wang, Z. Wang, X.Z. Zhang, L.Q. Liu, J. Xu, and D.P. Yu, Synthesis and field emission properties of TiSi2 nanowires. Applied Physics Letters, 2005. 86(24): p. 3.
20. Kim, J.J., D. Shindo, Y. Murakami, W. Xia, L.J. Chou, and Y.L. Chueh, Direct observation of field emission in a single TaSi2 nanowire. Nano Letters, 2007. 7(8): p. 2243-2247.
21. Datta, S. and B. Das, ELECTRONIC ANALOG OF THE ELECTROOPTIC MODULATOR. Applied Physics Letters, 1990. 56(7): p. 665-667.
22. Schmitt, A.L., J.M. Higgins, and S. Jin, Chemical synthesis and magnetotransport of magnetic semiconducting Fe(1-x)Co(x)Sialloy nanowires. Nano Letters, 2008. 8(3): p. 810-815.
23. In, J., K.S.K. Varadwaj, K. Seo, S. Lee, Y. Jo, M.H. Jung, J. Kim, and B. Kim, Single-crystalline ferromagnetic Fe1-xCoxSi nanowires. Journal of Physical Chemistry C, 2008. 112(12): p. 4748-4752.
24. Lin, Y.C., Y. Chen, A. Shaios, and Y. Huang, Detection of Spin Polarized Carrier in Silicon Nanowire with Single Crystal MnSi as Magnetic Contacts. Nano Letters, 2010. 10(6): p. 2281-2287.
25. Szczech, J.R., A.L. Schmitt, M.J. Bierman, and S. Jin, Single-crystal semiconducting chromium disilicide nanowires synthesized via chemical vapor transport. Chemistry of Materials, 2007. 19(13): p. 3238-3243.
26. Seo, K., K.S.K. Varadwaj, D. Cha, J. In, J. Kim, J. Park, and B. Kim, Synthesis and electrical properties of single crystalline CrSi2 nanowires. Journal of Physical Chemistry C, 2007. 111(26): p. 9072-9076.
27. Higgins, J.M., A.L. Schmitt, I.A. Guzei, and S. Jin, Higher Manganese Silicide Nanowires of Nowotny Chimney Ladder Phase. Journal of the American Chemical Society, 2008. 130(47): p. 16086-16094.
28. Zhou, F., J. Szczech, M.T. Pettes, A.L. Moore, S. Jin, and L. Shi, Determination of transport properties in chromium disilicide nanowires via combined thermoelectric and structural characterizations. Nano Letters, 2007. 7(6): p. 1649-1654.
29. Inui, H., Rhenium silicide as a new class of thermoelectric material. Materials and Technologies for Direct Thermal-to-Electric Energy Conversion. Symposium (Materials Research Society Symposium Proceedings Vol.886), 2006: p. 219-229.
30. Lin, Y.J., S. Zhou, X.H. Liu, S. Sheehan, and D.W. Wang, TiO2/TiSi2 Heterostructures for High-Efficiency Photoelectrochemical H2O Splitting. Journal of the American Chemical Society, 2009. 131(8): p. 2772-+.
31. Schmitt, A.L., J.M. Higgins, J.R. Szczech, and S. Jin, Synthesis and applications of metal silicide nanowires. Journal of Materials Chemistry, 2010. 20(2): p. 223-235.
32. Wagner, R.S. and W.C. Ellis, VAPOR-LIQUID-SOLID MECHANISM OF SINGLE CRYSTAL GROWTH ( NEW METHOD GROWTH CATALYSIS FROM IMPURITY WHISKER EPITAXIAL + LARGE CRYSTALS SI E ). Applied Physics Letters, 1964. 4(5): p. 89-&.
33. Yamamoto, K., H. Kohno, S. Takeda, and S. Ichikawa, Fabrication of iron silicide nanowires from nanowire templates. Applied Physics Letters, 2006. 89(8): p. 3.
34. Liu, B.Z., Y.F. Wang, S. Dilts, T.S. Mayer, and S.E. Mohney, Silicidation of silicon nanowires by platinum. Nano Letters, 2007. 7(3): p. 818-824.
35. Decker, C.A., R. Solanki, J.L. Freeouf, J.R. Carruthers, and D.R. Evans, Directed growth of nickel silicide nanowires. Applied Physics Letters, 2004. 84(8): p. 1389-1391.
36. Kim, C.J., K. Kang, Y.S. Woo, K.G. Ryu, H. Moon, J.M. Kim, D.S. Zang, and M.H. Jo, Spontaneous chemical vapor growth of NiSi nanowires and their metallic properties. Advanced Materials, 2007. 19(21): p. 3637-+.
37. Kim, J. and W.A. Anderson, Spontaneous nickel monosilicide nanowire formation by metal induced growth. Thin Solid Films, 2005. 483(1-2): p. 60-65.
38. Chung-Yang, L., L. Ming-Pei, L. Kao-Feng, W. Wen-Wei, and C. Lih-Juann, Vertically well-aligned epitaxial Ni 31Si 12 nanowire arrays with excellent field emission properties. Applied Physics Letters, 2008. 93(11): p. 113109 (3 pp.)-113109 (3 pp.).
39. Lian, O.Y., E.S. Thrall, M.M. Deshmukh, and H. Park, Vapor-phase synthesis and characterization of epsilon-FeSi nanowires. Advanced Materials, 2006. 18(11): p. 1437.
40. Song, Y.P. and S. Jin, Synthesis and properties of single-crystal beta(3)-Ni3Si nanowires. Applied Physics Letters, 2007. 90(17): p. 3.
41. Schmitt, A.L., M.J. Bierman, D. Schmeisser, F.J. Himpsel, and S. Jin, Synthesis and properties of single-crystal FeSi nanowires. Nano Letters, 2006. 6(8): p. 1617-1621.
42. Schmitt, A.L., L. Zhu, D. Schmeisser, F.J. Himpsel, and S. Jin, Metallic single-crystal CoSi nanowires via chemical vapor deposition of single-source precursor. Journal of Physical Chemistry B, 2006. 110(37): p. 18142-18146.
43. Zhou, S., X.H. Liu, Y.J. Lin, and D.W. Wang, Spontaneous growth of highly conductive two-dimensional single-crystalline TiSi2 nanonets. Angewandte Chemie-International Edition, 2008. 47(40): p. 7681-7684.
44. Hensel, J.C., R.T. Tung, J.M. Poate, and F.C. Unterwald, ELECTRICAL TRANSPORT-PROPERTIES OF COSI2 AND NISI2 THIN-FILMS. Applied Physics Letters, 1984. 44(9): p. 913-915.
45. Meyer, B., U. Gottlieb, O. Laborde, H.S. Yang, J.C. Lasjaunias, A. Sulpice, and R. Madar, Intrinsic properties of NiSi. Journal of Alloys and Compounds, 1997. 262: p. 235-237.
46. Wu, W.W., K.C. Lu, C.W. Wang, H.Y. Hsieh, S.Y. Chen, Y.C. Chou, S.Y. Yu, L.J. Chen, and K.N. Tu, Growth of Multiple Metal/Semiconductor Nanoheterostructures through Point and Line Contact Reactions. Nano Letters, 2010. 10(10): p. 3984-3989.
47. Dong, L.F., J. Bush, V. Chirayos, R. Solanki, J. Jiao, Y. Ono, J.F. Conley, and B.D. Ulrich, Dielectrophoretically controlled fabrication of single-crystal nickel silicide nanowire interconnects. Nano Letters, 2005. 5(10): p. 2112-2115.
48. Kim, J., W.A. Anderson, Y.J. Song, and G.B. Kim, Self-assembled nanobridge formation and spontaneous growth of metal-induced nanowires. Applied Physics Letters, 2005. 86(25): p. 3.
49. Kim, J. and W.A. Anderson, Direct electrical measurement of the self-assembled nickel silicide nanowire. Nano Letters, 2006. 6(7): p. 1356-1359.
50. Kim, J., D.H. Shin, E.S. Lee, C.S. Han, and Y.C. Park, Electrical characteristics of single and doubly connected Ni silicide nanowire grown by plasma-enhanced chemical vapor deposition. Applied Physics Letters, 2007. 90(25): p. 3.
51. Lee, C.Y., M.P. Lu, K.F. Liao, W.F. Lee, C.T. Huang, S.Y. Chen, and L.J. Chen, Free-Standing Single-Crystal NiSi2 Nanowires with Excellent Electrical Transport and Field Emission Properties. Journal of Physical Chemistry C, 2009. 113(6): p. 2286-2289.
52. Jürgens, D. XRD geometry figure. Available from: http://physik2.uni-goettingen.de/research/2_hofs/methods/XRD.
53. Liang, M.-L., National Cheng Kung University Center for Micro/Nano Science and Technology SEM SOP.
54. The TEM and its Optics, in Transmission Electron Microscopy and Diffractometry of Materials. 2008, Springer Berlin Heidelberg. p. 61-118.
55. Schematic of a DC SQUID. Available from: http://rich.phekda.org/squid/technical/part3.html.
56. Lindroos, J., D.P. Fenning, D.J. Backlund, E. Verlage, A. Gorgulla, S.K. Estreicher, H. Savin, and T. Buonassisi, Nickel: A very fast diffuser in silicon. Journal of Applied Physics, 2013. 113(20): p. 7.
57. Kang, K., S.K. Kim, C.J. Kim, and M.H. Jo, The role of NiOx overlayers on spontaneous growth of NiSix nanowires from Ni seed layers. Nano Letters, 2008. 8(2): p. 431-436.
58. Kittl, J.A., M.A. Pawlak, A. Lauwers, C. Demeurisse, K. Opsomer, K.G. Anil, C. Vrancken, M.J.H. van Dal, A. Veloso, S. Kubicek, P. Absil, K. Maex, and S. Biesemans, Work function of Ni silicide phases on HfSiON and SiO2: NiSi, Ni2Si, Ni31Si12, and Ni3Si fully silicided gates. Ieee Electron Device Letters, 2006. 27(1): p. 34-36.
59. Davies R H, D.A.T., Gisby J A, Robinson J A J, Martin S M, CALPHAD, 2002, 26(2), pp. 229-271., Ni-Si Calculated Phase Diagram. MTDATA - Thermodynamics and Phase Equilibrium Software from the National Physical Laboratory.