簡易檢索 / 詳目顯示

研究生: 林真毅
Lin, Jen-Yi
論文名稱: 以鎳傳輸式化學氣相沉積法合成矽化鎳奈米線之成長與特性研究
Growth and Characterization of Nickel Silicide Nanowires by Nickel Transported CVD
指導教授: 呂國彰
Lu, Kuo-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 112
中文關鍵詞: 矽化鎳奈米線化學氣相沉積法場發射鐵磁性
外文關鍵詞: nickel silicide, nanowire, CVD, field emission, ferromagnetic
相關次數: 點閱:92下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用氯化鎳水合物(NiCl2‧6H2O)做為前驅物,以鎳傳輸式化學氣相沉積法於矽基板上合成矽化鎳奈米線,並觀察與研究矽化鎳奈米線於不同溫度、氣壓、生長時間、前驅物質量與矽基板方向等製程參數下之變化。實驗於溫度750°C、850°C、950°C時分別成長出包覆二氧化矽殼層之單晶Ni31Si12、Ni2Si、NiSi2等相,並於溫度降至400°C時可形成包覆二氧化矽殼層之單晶純鎳相。氣壓則與奈米線徑成正相關。由不同參數之影響推測奈米線成長之機制為V-S成長機制,奈米線形貌之生成取決於過飽和度之控制,其相變化則不同於一般矽傳輸之製程,反由矽原子於鎳原子中之擴散速率所控制。本研究亦分別對生成之奈米線進行場發射特性與磁特性之量測。場發射量測結果顯示,Ni31Si12、Ni2Si、NiSi2場增強因子分別為4097、4561、2476,起始電場分別為2.39V/μm、2.28 V/μm、2.64 V/μm,具有十分優秀之場發射特性,推測與其陣列式分佈與高密度奈米線叢聚成同方向之錐狀形貌有關。磁性量測結果顯示,富鎳相Ni31Si12及Ni2Si具有鐵磁性材料之特性,NiSi2則具有反磁性材料之特性,其原因應與單位體積下之鎳原子含量相關。

    Single crystalline NiSi2, Ni2Si, Ni31Si12 and Ni nanowire arrays coated with amorphous silicon dioxide were synthesized with high quantity by nickel transported chemical vapor deposition (CVD) method. Nickel (II) chloride hexahydrate (NiCl2•6H2O) was utilized as a single-source precursor and reacted with silicon substrate. The morphological changes with various reaction temperatures, ambient pressure and reaction time, were observed and studied, respectively. A plausible new growth mechanism via silicon diffusion in nickel was carry out by the observation of pure Ni nanowires grown at 400°C and the consumption of Si substrates. At 750°C and 850°C, cone-shaped nanowire arrays were formed composed of dense and oriented Ni31Si12 and Ni2Si nanowires with length over 60μm. Field emission measurements show that the turn-on field of the as-grown NiSi2, Ni2Si and Ni31Si12 nanowires were about 2.64V/μm, 2.28V/μm and 2.39V/μm, respectively. The field enhancement factor was measured to be 2476, 4561 and 4097, respectively, which is of potential applications as nanoscale field emitters. Moreover, ferromagnetic properties of Ni2Si and Ni31Si12 nanowire arrays were measured at low temperature, which provides diverse options in the use of biological materials.

    總目錄 摘要 I EXTENDED ABSTRACT II 誌謝 XIII 總目錄 XIV 表目錄 XVIII 圖目錄 XIX 第一章、緒論 1 1.1 背景 1 1.2 研究動機 3 1.3 研究目的 4 第二章、理論基礎與文獻回顧 5 2.1 過渡金屬矽化物 5 2.2 過渡金屬矽化物奈米線 6 2.2.1 奈電性質(Nanoelectronics) 7 2.2.2 場發射性質(Field Emitters) 8 2.2.3 電子自旋性質(Spintronics) 9 2.2.4 熱電性質(Thermoelectrics) 10 2.2.5 光伏轉換性質(Photovoltaics) 12 2.3 矽化物奈米線合成技術 12 2.3.1 矽奈米線矽化法 13 2.3.2 傳遞矽至金屬薄膜或基板法 14 2.3.3 傳遞金屬元素至矽基板法 15 2.3.3.1 純金屬蒸氣作為傳遞源 15 2.3.3.2 金屬鹵化物作為傳遞源 16 2.3.4 同時傳遞金屬與矽元素法 16 2.3.4.1 化學氣相傳輸法(CVT) 17 2.3.4.2 化學氣相沉積法(CVD) 17 2.4 矽化鎳奈米線 18 2.4.1 矽奈米線矽化法製備矽化鎳奈米線 19 2.4.2 以矽蒸氣/矽烷製備矽化鎳奈米線 20 2.4.3 CVT法製備矽化鎳奈米線 22 第三章、實驗方法 38 3.1 矽化鎳奈米線之製備 38 3.2 矽化鎳奈米線之分析 39 3.2.1 X光繞射分析儀 39 3.2.2 掃描式電子顯微鏡 40 3.2.3 穿透式電子顯微鏡 41 3.2.4 能量散佈分析儀 42 3.2.5 場發射量測系統 42 3.2.6 超導量子干涉儀 42 第四章、結果與討論 51 4.1 成長參數對產物之形貌與結構之影響 51 4.1.1 不同基板之影響 52 4.1.2 不同生長溫度之影響 53 4.1.3 不同生長壓力之影響 58 4.1.4 不同反應時間之影響 63 4.1.5 前驅物質量不同之影響 64 4.1.6 成長機制之探討 65 4.2 性質量測 69 4.2.1 場發射特性量測 69 4.2.2 磁性量測 71 第五章、結論 105 第六章、未來展望 107 文獻回顧 108   表目錄 表 3.1實驗環境條件參數之控制 50 表 4.1不同溫度下奈米線之元素原子組成百分比 104   圖目錄 圖 2.1 Ni2Si奈米線之電性分析圖[10] 24 圖 2.2 單根奈米線場發量測裝置及示意圖[20] 25 圖 2.3 FexCo1-xSi奈米線磁性量測[22] 25 圖 2.4 CrSi2奈米線熱電性質量測與結果[28] 26 圖 2.5 TiO2/TiSi2光伏元件構造圖[30] 27 圖 2.6 矽奈米線矽化法示意圖[11] 27 圖 2.7 點接觸式矽化矽奈米線法示意圖[12] 28 圖 2.8 以SiH4傳遞矽原子合成Ni2Si奈米線示意圖[14] 28 圖 2.9 矽濺鍍合成NiSi奈米線示意圖[37] 29 圖 2.10 鉭蒸氣傳輸合成矽化鉭奈米線示意圖[16] 30 圖 2.11 CVT成長奈米線法示意圖[31] 31 圖 2.12 SSP CVD成長奈米線法示意圖[31] 31 圖 2.13矽奈米線矽化法合成NiSi之電性與FET元件[11] 32 圖 2.14 矽奈米線矽化法合成SBFET[13] 32 圖 2.15 點接觸式矽化法合成奈米級閘極之FET[12] 33 圖 2.16點線接觸式矽化法製備週期性異質結構奈米線[46] 33 圖 2.17 介電泳法量測奈米線電性之示意圖[47] 34 圖 2.18 以SiH4生長NiSi奈米線於不同基板上[36] 34 圖 2.19 具極佳場發射性質之Ni2Si奈米線[14] 35 圖 2.20 MIG法可直接於量測電極與元件上生長[48, 49] 36 圖 2.21 矽蒸氣傳輸法合成Ni31Si12奈米線陣列[38] 36 圖 2.22 CVT法生長Ni2Si奈米線 37 圖 3.1 實驗流程圖 44 圖 3.2 實驗儀器配置圖 44 圖 3.3 升溫曲線配置圖 45 圖 3.4 Bragg繞射定律示意圖[52] 46 圖 3.5 掃描式電子顯微鏡結構示意圖[53] 46 圖 3.6 電子束入射試片時之交互作用示意圖[53] 47 圖 3.7 TEM成像示意圖[54] 48 圖 3.8 場發射量測裝置示意圖 49 圖 3.9 SQUID原理示意圖[55] 49 圖 4.1 不同溫度與基板之奈米線生長形貌比較圖 73 圖 4.2 不同矽晶面與鎳晶體之晶體結構示意圖 74 圖 4.3 高溫低壓組試片於不同溫度下之XRD繞射圖 75 圖 4.4 高溫生長之單根奈米線TEM與FFT繞射圖形 76 圖 4.5 Ni-Si二元相圖[59] 77 圖 4.6 低溫高壓組奈米線之SEM影像、XRD與TEM分析 78 圖 4.7 溫度400°C,壓力70torr,持溫4小時奈米線之(a) SEM影像圖 (b)TEM分析 (c) EDS成分分析 79 圖 4.8 低溫時矽化鎳奈米線可能之生成機制示意圖 80 圖 4.9 溫度850°C不同壓力下奈米線生長之SEM、XRD與TEM 81 圖 4.10溫度550°C不同壓力下奈米線生長之SEM及XRD 82 圖 4.11 鎳原子於氧化鋁上沉積比例與距離關係圖 83 圖 4.12 氬分壓對前驅物蒸氣壓影響之微觀模型 83 圖 4.13 850°C時於不同壓力下之線徑 84 圖 4.14 成核自由能變化與核半徑關係之曲線圖 85 圖 4.15 溫度850°C,壓力10torr奈米線之持溫時間與線徑圖 86 圖 4.16 溫度550°C,壓力60torr奈米線於不同持溫時間之SEM與XRD 87 圖 4.17 溫度550°C,壓力60torr,持溫4小時奈米線於不同前驅物質量下之SEM與XRD 88 圖 4.18 氣流影響過飽和濃度之示意圖 89 圖 4.19 溫度850°C,壓力10torr下持溫3分鐘及15分鐘比較圖 90 圖 4.20 奈米線生長與矽基板消耗之示意圖 91 圖 4.21 矽原子擴散示意圖 92 圖 4.22 奈米線成長機制示意圖 93 圖 4.23 Ni31Si12奈米線之J-E曲線與F-N散佈圖 94 圖 4.24 Ni2Si奈米線之J-E曲線與F-N散佈圖 94 圖 4.25 NiSi2奈米線之J-E曲線與F-N散佈圖 95 圖 4.26 不同持溫時間Ni2Si奈米線J-E曲線圖 95 圖 4.27 不同持溫時間Ni2Si奈米線F-N散佈圖 96 圖 4.28 Ni31Si12奈米線之(a)45°拍攝陣列與(b)尖端形貌 97 圖 4.29 Ni2Si奈米線之(a)45°拍攝陣列與(b)尖端形貌 98 圖 4.30 持溫(a)30分鐘與(b)1小時之Ni2Si奈米線 99 圖 4.31 場發特性與奈米線形貌關係示意圖 100 圖 4.32 Ni31Si12奈米線磁滯曲線圖 101 圖 4.33 Ni2Si奈米線磁滯曲線圖 101 圖 4.34 NiSi2奈米線磁滯曲線圖 102 圖 4.35 低溫下不同相奈米線磁滯曲線比較圖 102

    1. Leong, D., M. Harry, K.J. Reeson, and K.P. Homewood, A silicon/iron-disilicide lightemitting diode operating at a wavelength of 1.5um. Nature, 1997. 387: p. 686-688.
    2. Bost, M.C. and J.E. Mahan, An investigation of the optical constants and band gap of chromium disilicide. J. Appl. Phys., 1987. 63: p. 839-844.
    3. Derrien, J., J. Chevrier, V. Lethanh, and J.E. Mahan, Semiconducting silicide-silicon heterostructures growth, properties and applications. Applied Surface Science, 1992. 56: p. 382-393.
    4. Fukuzawa, Y., T. Ootsuka, N. Otogawa, H. Abe, Y. Nakayama, and Y. Makita, Characterization of B-FeSi2 Films as a novel solar cell semiconductor. P. Soc. Photo-Opt. Inst., 2006. 6197.
    5. Senthilarasu, S., R. Sathyamoorthy, and S. Lalitha, Synthesis and characterization of beta-FeSi2 grown by thermal annealing of Fe/Si bilayers for photovoltaic applications. Solar Energy Materials and Solar Cells, 2004. 82(1-2): p. 299-305.
    6. Chen, L.J., Silicide Technology for Integrated Circuits. 2004, London, UK: The Institution of Electrical Engineers.
    7. Maszara, W.P., Fully silicided metal gates for high-performance CMOS technology: A review. J. Electrochem. Soc., 2005. 152: p. G550-G555.
    8. Zhang, S.L. and M. Ostling, Metal silicides in CMOS technology: Past, present, and future trends. Crit. Rev. Solid State Mat. Sci., 2003. 28: p. 1-129.
    9. Zhang, S.L. and U. Smith, Self-aligned silicides for ohmic contacts in complementary metal-oxide-semiconductor technology: TiSi2, CoSi2 and NiSi. Journal of Vacuum Science & Technology A, 2004. 22(4): p. 1361-1370.
    10. Song, Y.P., A.L. Schmitt, and S. Jin, Ultralong single-crystal metallic Ni2Si nanowires with low resistivity. Nano Letters, 2007. 7(4): p. 965-969.
    11. Wu, Y., J. Xiang, C. Yang, W. Lu, and C.M. Lieber, Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature, 2004. 430(6995): p. 61-65.
    12. Lu, K.C., W.W. Wu, H.W. Wu, C.M. Tanner, J.P. Chang, L.J. Chen, and K.N. Tu, In situ control of atomic-scale Si layer with huge strain in the nanoheterostructure NiSi/Si/NiSi through point contact reaction. Nano Letters, 2007. 7(8): p. 2389-2394.
    13. Weber, W.M., L. Geelhaar, A.P. Graham, E. Unger, G.S. Duesberg, M. Liebau, W. Pamler, C. Cheze, H. Riechert, P. Lugli, and F. Kreupl, Silicon-nanowire transistors with intruded nickel-silicide contacts. Nano Letters, 2006. 6(12): p. 2660-2666.
    14. Liu, Z.H., H. Zhang, L. Wang, and D.R. Yang, Controlling the growth and field emission properties of silicide nanowire arrays by direct silicification of Ni foil. Nanotechnology, 2008. 19(37): p. 4.
    15. Kim, J., E.S. Lee, C.S. Han, Y. Kang, D. Kim, and W.A. Anderson, Observation of Ni silicide formations and field emission properties of Ni silicide nanowires. Microelectronic Engineering, 2008. 85(8): p. 1709-1712.
    16. Chueh, Y.L., L.J. Chou, S.L. Cheng, L.J. Chen, C.J. Tsai, C.M. Hsu, and S.C. Kung, Synthesis and characterization of metallic TaSi2 nanowires. Applied Physics Letters, 2005. 87(22): p. 3.
    17. Chueh, Y.L., M.T. Ko, L.J. Chou, L.J. Chen, C.S. Wu, and C.D. Chen, TaSi2 nanowires: A potential field emitter and interconnect. Nano Letters, 2006. 6(8): p. 1637-1644.
    18. Lin, H.K., Y.F. Tzeng, C.H. Wang, N.H. Tai, I.N. Lin, C.Y. Lee, and H.T. Chiu, Ti5Si3 nanowire and its field emission property. Chemistry of Materials, 2008. 20(7): p. 2429-2431.
    19. Xiang, B., Q.X. Wang, Z. Wang, X.Z. Zhang, L.Q. Liu, J. Xu, and D.P. Yu, Synthesis and field emission properties of TiSi2 nanowires. Applied Physics Letters, 2005. 86(24): p. 3.
    20. Kim, J.J., D. Shindo, Y. Murakami, W. Xia, L.J. Chou, and Y.L. Chueh, Direct observation of field emission in a single TaSi2 nanowire. Nano Letters, 2007. 7(8): p. 2243-2247.
    21. Datta, S. and B. Das, ELECTRONIC ANALOG OF THE ELECTROOPTIC MODULATOR. Applied Physics Letters, 1990. 56(7): p. 665-667.
    22. Schmitt, A.L., J.M. Higgins, and S. Jin, Chemical synthesis and magnetotransport of magnetic semiconducting Fe(1-x)Co(x)Sialloy nanowires. Nano Letters, 2008. 8(3): p. 810-815.
    23. In, J., K.S.K. Varadwaj, K. Seo, S. Lee, Y. Jo, M.H. Jung, J. Kim, and B. Kim, Single-crystalline ferromagnetic Fe1-xCoxSi nanowires. Journal of Physical Chemistry C, 2008. 112(12): p. 4748-4752.
    24. Lin, Y.C., Y. Chen, A. Shaios, and Y. Huang, Detection of Spin Polarized Carrier in Silicon Nanowire with Single Crystal MnSi as Magnetic Contacts. Nano Letters, 2010. 10(6): p. 2281-2287.
    25. Szczech, J.R., A.L. Schmitt, M.J. Bierman, and S. Jin, Single-crystal semiconducting chromium disilicide nanowires synthesized via chemical vapor transport. Chemistry of Materials, 2007. 19(13): p. 3238-3243.
    26. Seo, K., K.S.K. Varadwaj, D. Cha, J. In, J. Kim, J. Park, and B. Kim, Synthesis and electrical properties of single crystalline CrSi2 nanowires. Journal of Physical Chemistry C, 2007. 111(26): p. 9072-9076.
    27. Higgins, J.M., A.L. Schmitt, I.A. Guzei, and S. Jin, Higher Manganese Silicide Nanowires of Nowotny Chimney Ladder Phase. Journal of the American Chemical Society, 2008. 130(47): p. 16086-16094.
    28. Zhou, F., J. Szczech, M.T. Pettes, A.L. Moore, S. Jin, and L. Shi, Determination of transport properties in chromium disilicide nanowires via combined thermoelectric and structural characterizations. Nano Letters, 2007. 7(6): p. 1649-1654.
    29. Inui, H., Rhenium silicide as a new class of thermoelectric material. Materials and Technologies for Direct Thermal-to-Electric Energy Conversion. Symposium (Materials Research Society Symposium Proceedings Vol.886), 2006: p. 219-229.
    30. Lin, Y.J., S. Zhou, X.H. Liu, S. Sheehan, and D.W. Wang, TiO2/TiSi2 Heterostructures for High-Efficiency Photoelectrochemical H2O Splitting. Journal of the American Chemical Society, 2009. 131(8): p. 2772-+.
    31. Schmitt, A.L., J.M. Higgins, J.R. Szczech, and S. Jin, Synthesis and applications of metal silicide nanowires. Journal of Materials Chemistry, 2010. 20(2): p. 223-235.
    32. Wagner, R.S. and W.C. Ellis, VAPOR-LIQUID-SOLID MECHANISM OF SINGLE CRYSTAL GROWTH ( NEW METHOD GROWTH CATALYSIS FROM IMPURITY WHISKER EPITAXIAL + LARGE CRYSTALS SI E ). Applied Physics Letters, 1964. 4(5): p. 89-&.
    33. Yamamoto, K., H. Kohno, S. Takeda, and S. Ichikawa, Fabrication of iron silicide nanowires from nanowire templates. Applied Physics Letters, 2006. 89(8): p. 3.
    34. Liu, B.Z., Y.F. Wang, S. Dilts, T.S. Mayer, and S.E. Mohney, Silicidation of silicon nanowires by platinum. Nano Letters, 2007. 7(3): p. 818-824.
    35. Decker, C.A., R. Solanki, J.L. Freeouf, J.R. Carruthers, and D.R. Evans, Directed growth of nickel silicide nanowires. Applied Physics Letters, 2004. 84(8): p. 1389-1391.
    36. Kim, C.J., K. Kang, Y.S. Woo, K.G. Ryu, H. Moon, J.M. Kim, D.S. Zang, and M.H. Jo, Spontaneous chemical vapor growth of NiSi nanowires and their metallic properties. Advanced Materials, 2007. 19(21): p. 3637-+.
    37. Kim, J. and W.A. Anderson, Spontaneous nickel monosilicide nanowire formation by metal induced growth. Thin Solid Films, 2005. 483(1-2): p. 60-65.
    38. Chung-Yang, L., L. Ming-Pei, L. Kao-Feng, W. Wen-Wei, and C. Lih-Juann, Vertically well-aligned epitaxial Ni 31Si 12 nanowire arrays with excellent field emission properties. Applied Physics Letters, 2008. 93(11): p. 113109 (3 pp.)-113109 (3 pp.).
    39. Lian, O.Y., E.S. Thrall, M.M. Deshmukh, and H. Park, Vapor-phase synthesis and characterization of epsilon-FeSi nanowires. Advanced Materials, 2006. 18(11): p. 1437.
    40. Song, Y.P. and S. Jin, Synthesis and properties of single-crystal beta(3)-Ni3Si nanowires. Applied Physics Letters, 2007. 90(17): p. 3.
    41. Schmitt, A.L., M.J. Bierman, D. Schmeisser, F.J. Himpsel, and S. Jin, Synthesis and properties of single-crystal FeSi nanowires. Nano Letters, 2006. 6(8): p. 1617-1621.
    42. Schmitt, A.L., L. Zhu, D. Schmeisser, F.J. Himpsel, and S. Jin, Metallic single-crystal CoSi nanowires via chemical vapor deposition of single-source precursor. Journal of Physical Chemistry B, 2006. 110(37): p. 18142-18146.
    43. Zhou, S., X.H. Liu, Y.J. Lin, and D.W. Wang, Spontaneous growth of highly conductive two-dimensional single-crystalline TiSi2 nanonets. Angewandte Chemie-International Edition, 2008. 47(40): p. 7681-7684.
    44. Hensel, J.C., R.T. Tung, J.M. Poate, and F.C. Unterwald, ELECTRICAL TRANSPORT-PROPERTIES OF COSI2 AND NISI2 THIN-FILMS. Applied Physics Letters, 1984. 44(9): p. 913-915.
    45. Meyer, B., U. Gottlieb, O. Laborde, H.S. Yang, J.C. Lasjaunias, A. Sulpice, and R. Madar, Intrinsic properties of NiSi. Journal of Alloys and Compounds, 1997. 262: p. 235-237.
    46. Wu, W.W., K.C. Lu, C.W. Wang, H.Y. Hsieh, S.Y. Chen, Y.C. Chou, S.Y. Yu, L.J. Chen, and K.N. Tu, Growth of Multiple Metal/Semiconductor Nanoheterostructures through Point and Line Contact Reactions. Nano Letters, 2010. 10(10): p. 3984-3989.
    47. Dong, L.F., J. Bush, V. Chirayos, R. Solanki, J. Jiao, Y. Ono, J.F. Conley, and B.D. Ulrich, Dielectrophoretically controlled fabrication of single-crystal nickel silicide nanowire interconnects. Nano Letters, 2005. 5(10): p. 2112-2115.
    48. Kim, J., W.A. Anderson, Y.J. Song, and G.B. Kim, Self-assembled nanobridge formation and spontaneous growth of metal-induced nanowires. Applied Physics Letters, 2005. 86(25): p. 3.
    49. Kim, J. and W.A. Anderson, Direct electrical measurement of the self-assembled nickel silicide nanowire. Nano Letters, 2006. 6(7): p. 1356-1359.
    50. Kim, J., D.H. Shin, E.S. Lee, C.S. Han, and Y.C. Park, Electrical characteristics of single and doubly connected Ni silicide nanowire grown by plasma-enhanced chemical vapor deposition. Applied Physics Letters, 2007. 90(25): p. 3.
    51. Lee, C.Y., M.P. Lu, K.F. Liao, W.F. Lee, C.T. Huang, S.Y. Chen, and L.J. Chen, Free-Standing Single-Crystal NiSi2 Nanowires with Excellent Electrical Transport and Field Emission Properties. Journal of Physical Chemistry C, 2009. 113(6): p. 2286-2289.
    52. Jürgens, D. XRD geometry figure. Available from: http://physik2.uni-goettingen.de/research/2_hofs/methods/XRD.
    53. Liang, M.-L., National Cheng Kung University Center for Micro/Nano Science and Technology SEM SOP.
    54. The TEM and its Optics, in Transmission Electron Microscopy and Diffractometry of Materials. 2008, Springer Berlin Heidelberg. p. 61-118.
    55. Schematic of a DC SQUID. Available from: http://rich.phekda.org/squid/technical/part3.html.
    56. Lindroos, J., D.P. Fenning, D.J. Backlund, E. Verlage, A. Gorgulla, S.K. Estreicher, H. Savin, and T. Buonassisi, Nickel: A very fast diffuser in silicon. Journal of Applied Physics, 2013. 113(20): p. 7.
    57. Kang, K., S.K. Kim, C.J. Kim, and M.H. Jo, The role of NiOx overlayers on spontaneous growth of NiSix nanowires from Ni seed layers. Nano Letters, 2008. 8(2): p. 431-436.
    58. Kittl, J.A., M.A. Pawlak, A. Lauwers, C. Demeurisse, K. Opsomer, K.G. Anil, C. Vrancken, M.J.H. van Dal, A. Veloso, S. Kubicek, P. Absil, K. Maex, and S. Biesemans, Work function of Ni silicide phases on HfSiON and SiO2: NiSi, Ni2Si, Ni31Si12, and Ni3Si fully silicided gates. Ieee Electron Device Letters, 2006. 27(1): p. 34-36.
    59. Davies R H, D.A.T., Gisby J A, Robinson J A J, Martin S M, CALPHAD, 2002, 26(2), pp. 229-271., Ni-Si Calculated Phase Diagram. MTDATA - Thermodynamics and Phase Equilibrium Software from the National Physical Laboratory.

    下載圖示 校內:2019-08-15公開
    校外:2019-08-15公開
    QR CODE