| 研究生: |
葉碩儒 Yeh, Shou-Ju |
|---|---|
| 論文名稱: |
接收機自主完整性監測系統支援新空中交通管理系統之研究 Development and Implementation of RAIM to Support the New ATM System |
| 指導教授: |
詹劭勳
Jan, Shau-Shiun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 民航研究所 Institute of Civil Aviation |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 空中交通管理系統 、全球定位系統 、接收機自主完整性監測 |
| 外文關鍵詞: | Receiver Autonomous Integrity Monitoring (RAIM), Air Traffic Management (ATM), Global Positioning System (GPS) |
| 相關次數: | 點閱:129 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為因應未來民航運輸成長需求,國際間開始建置通訊、導航、監視/空中交通管理(Communications, Navigation, Surveillance/Air Traffic Management, CNS/ATM)系統,其中包含全球定位系統(Global Positioning System, GPS)的應用。根據美國聯邦航空總署所發佈的文件AC 90-100A,當滿足TSO-C129 規範的GPS 接收機單獨使用在區域航行(Area Navigation, RNAV)時,必須要事先確認航路上的接收機自主完整性監測(Receiver Autonomous Integrity Monitoring, RAIM)資訊。因此成功大學民航研究所與民航局合作發展一RAIM 預測系統(RAIM Prediction System, RPS)支援新一代的空中交通管理系統,RPS 主要是針對台北飛航情報區提供未來72 小時接收機自主完整性監測的預測資訊。除此之外,為了讓機場操作員有能力監測出無法預測的情況,本文還發展一即時接收機自主完整性監測系統(Real Time RAIM System)。
RPS 的架構包含透過網頁顯示的使用者介面以及與ATM 系統之間的TCP/IP 連線。RPS 會透過星曆計算未來的衛星位置,藉此預測指定時間的指定地點的RAIM 資訊,再將預測的結果顯示在網頁上,使用者便可以透過網路,依據不同的需求調整環境條件,取得適用於使用者任務需求的RAIM 資訊。除此之外,RPS 也依照民航局
ATM 系統的需求設計TCP/IP 連線,讓航管人員可以透過ATM 系統的使用者介面讀取RPS 傳送的RAIM 資訊。
然而,有鑑於RPS 不具備即時監控衛星導航系統訊號之能力,因此本文接著發展RTRS,目的是為了進一步找出產生非預期性錯誤之衛星,同時即時提供使用者GPS 服務的完整性資訊和可提供服務性能之結果,藉此提供使用者獲得更完整的衛星導航系統效能,並將RTRS 運算結果利用圖形化介面顯示。
This work develops a Receiver Autonomous Integrity Monitoring (RAIM) Prediction System (RPS) to provide the 72-hour RAIM prediction information about Taipei Flight Information Region (FIR) to the new Air Traffic Management (ATM) system.
Furthermore, as for monitoring the unscheduled faults of GPS for airports in Taipei FIR, this work also develops a Real Time RAIM System (RTRS) for airport operators. The architecture of RPS includes one web-based service and one TCP/IP communication channel to the ATM system. The RAIM fault detection algorithm of the RPS is based on Radio Technical Commission for Aeronautics (RTCA) DO-208, and it provides the GPS RAIM predictions for the terminal and Non-Precision Approach (NPA) operations. The RPS routinely acquires the most recent GPS YUMA almanac to determine the GPS constellation in one minute resolution for a 72-hour period, and the RPS automatically obtains the Notice Advisory to NAVSTAR Users (NANU) to indicate any change of the GPS satellite status. If there are any GPS RAIM outages predicted by the RPS, then it would indicate the location and duration of these outages for certain operations. The web-based service provides the current GPS status, the availability tool, the NPA tool, and the visibility tool. Additionally, the RPS establishes a TCP/IP connection with the ATM system for transmitting the forecast message in XML schema, and airport operators can reach the forecast results from the ATM system for Taipei FIR.
The other branch of this work is to develop a RTRS to detect the unscheduled GPS faults within the Time-To-Alert (TTA) for certain operations, and it would exclude the source of the unacceptably large position error using a Fault Detection and Exclusion (FDE) algorithm. The RAIM/FDE algorithms of this RTRS are based on RTCA DO-229D. This RTRS includes a Graphic User Interface (GUI) to show the real time status of GPS satellites in view and issues the Notice To Airmen (NOTAM) text messages to aviation users.
Accordingly, this thesis will first describe the development and implementation of the RPS for TSO-C129 GPS RAIM availability prediction to meet AC 90-100A requirement. The design and uses of the RPS web-based service will be detailed in this thesis as well. Second, it will explain the TCP/IP communication interface between the RPS and the new ATM system for NPA operation. Third, the development and implementation of the RTRS will be discussed. Finally, the future plans to enhance both RPS and RTRS for the CNS/ATM project in Taipei FIR will be investigated.
[1]. P. Enge and P. Misra, "Scanning the Issue/Technology: Special Issue on Global Positioning System," Proceeding of IEEE, Vol. 87, No. 1, January 1999.
[2]. P. Daly, “Navstar GPS and GLONASS: global satellite navigation systems,” 40th Congress of the International Astronautical Federation, Paper IAF-89-396, Malaga, Spain, October 7th-12th, 1989.
[3]. GPS General Information - United States Coast Guard Navigation Center, http://www.navcen.uscg.gov/gps/.
[4]. P. Misra and P. Enge, Global Positioning System: Signals, Measurements and Performance, 2nd edition, Ganga-Jamuna Press, 2006.
[5]. CNS/ATM Program, Air Navigation, and Weather Services website, http://www.anws.gov.tw/CNSATM/big5/index_chinese.html.
[6]. B. W. Parkinson and P. Axelrad, "Autonomous GPS Integrity Monitoring Using the Pseudorange Residual," Journal of the Institute of Navigation, Vol. 35, No. 2, Summer, 1988.
[7]. B. W. Parkinson and J.J. Jr. Spilker, Global Positioning System: Theory and Applications, American Institute of Aeronautics and Astronautics, 1996.
[8]. B. R. Grover, "A Baseline GPS RAIM Scheme and a Note on the Equivalence of Three RAIM Methods," Navigation, Vol. 39, No. 3, Fall, 1992, pp.301-316.
[9]. Annex 15: Aeronautical Information Services, 12th edition, International Civil Aviation Organization, April, 2008.
[10]. Direction Generale de l'Aviation Civile, http://www.sia.aviation-civile.gouv.fr.
[11]. T. Walter, J. Blanch, P. Enge, B. Pervan, and L. Gratton, “Future Architectures to Provide Aviation Integrity,” Proceedings of ION NTM, January, 2008.
[12]. Advisory Circular 90-100A, “U.S Terminal and En Route Area Navigation (RNAV) Operations,” FAA, March 1st, 2007.
[13]. TSO-C129, “Airborne Supplemental Navigation Equipment Using the Global Positioning System (GPS),” Department of Transportation, Federal Aviation Administration, Washington, DC, February 20th, 1996.
[14]. W. Y. Ochieng, K. Sauer, D. Walsh, G. Brodin, S. Griffin, and M. Denney, “GPS Integrity and Potential Impaction Aviation Safety,” Journal of the Institute of Navigation, Vol. 56, 2003, pp. 51-65.
[15]. M. A. Sturza, A. K. Brown, “Comparison of Fixed and Variable Threshold RAIM Algorithms,” Proceedings of ION GPS, Colorado, Spring, September 19th-21th, 1990, pp. 437-443.
[16]. FAA AC90-100 GPS RAIM Prediction website, http://www.raimprediction.net/.
[17]. Airservices Australia RAIM Prediction Service User Documentation, http://www.airservices.gov.au/Brief/raimdoc.asp#Outage.
[18]. EUROCONTROL GPS RAIM Prediction Tool, http://augur.ecacnav.com/augur/app/home.
[19]. R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye, Probability and Statistics for Engineers and Scientists, 8th edition, Pearson Prentice Hall, 2007.
[20]. Trimble’s Planning Software, http://www.trimble.com/planningsoftware.shtml
[21]. RTCA SC-159, Minimum Operational Performance Standards for Airbone Supplemental Navigation Equipment Using Global Positioning System, RTCA/DO-208, July 12th, 1991.
[22]. T. Walter and P. Enge, "Weighted RAIM for. Precision Approach," Proceedings of ION GPS, Palm Springs, California, September 12th-15th, 1995.
[23]. P.B. Ober, “Ways to Improve RAIM/AAIM Availability Using Position Domain Performance Computations,” Proceeding of ION NTM, January, 1997, pp. 485-498.
[24]. R. Broughton, Evaluation of a New Satellite Navigation Integrity Monitoring Algorithm, Master’s thesis, Department of Astronautics and Space Engineering, Cranfield University, September, 2003.
[25]. J. Y. Yu, Fault Detection and Exclusion Used in a Global Positioning System GPS Receiver, United States Patent 5,841,399, November 24th, 1998.
[26]. United States Coast Guard website archive, http://www.navcen.uscg.gov/archives/gps/2009/NANUS/.
[27]. C. Dufresne, A. Hansen, K. O’Neill, J. Parmet, “Global Positioning System (GPS) Receiver Autonomous Integrity Monitoring (RAIM) Web Service to Support Area Navigation (RNAV) Flight Planning,” Proceedings of ION NTM, San Diego, California, January 28th-30th, 2008.
[28]. RTCA SC-159, Minimum Operational Performance Standards For Global Positioning System/Wide Area Augmentation System Airborne Equipment, RTCA/DO-229D, December 13th, 2006.