| 研究生: |
王仁佑 Wang, Ren-You |
|---|---|
| 論文名稱: |
抗氧化金屬鈀層於銅線製程界面反應之影響 The Influence of Oxidation-Resistant Palladium on the Interfacial Reactions of Copper Wire Bonding |
| 指導教授: |
呂國彰
Lu, Kuo-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 界面反應 、銅線製程 、接點可靠度 |
| 外文關鍵詞: | Interfacial reaction, Copper wire bonding, bonding reliability |
| 相關次數: | 點閱:93 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究透過觀察鍍鈀銅線與4N銅線接點於各種可靠度測試後,其界面反應之情形,探討抗氧化金屬鈀層於銅線製程界面反應之影響。
藉由WDS及EPMA 元素分佈分析,發現在未經可靠度測試之前, Pd原子主要分佈在接點內部,並於內部呈現對稱的雙圓弧形帶狀分布。另外,在銅線接點表面及界面處也有觀察到Pd原子的分佈。
經過可靠度測試後,Pd原子似乎會往Cu/Al接合界面方向擴散,並於界面處會形成一層 Pd-Cu 的固溶體層。當Cu-Al IMC成長時,此固溶體層在界面處,會有類似於擴散組障層(Diffusion barrier)的效果,影響銅鋁之間的交互擴散。這個現象會導致鍍鈀銅線接點的Cu-Al IMC生成速度慢於4N純銅線接點,並可能影響界面反應生成特定的IMC相。而較慢的Cu/Al IMC生長速度及特定的IMC相,有助於避免接合界面處裂縫的生成及提升接點接合性質,所以銅線上的抗氧化金屬鈀層對於改善接合可靠度性質有正面的助益。
The influence of oxidation-resistant palladium on the interfacial reactions of copper wire bonding at various reliability tests was investigated in this study.
In the as-bonded state, Pd was mainly distributed within the ball joint, forming two symmetrical curved bands near the Cu/Al interface; there were still some Pd atoms located at the surface of ball joints. During the reliability tests, Pd diffused from the inner portion of Pd-Cu ball toward the bond interface, and the Pd-Cu solution layer was formed near the bond interface. The Pd-Cu solid solution layer may act as a diffusion barrier to reduce the IMC growth rate by affecting the interdiffusion between Cu and Al. This phenomenon may lead to the slower Cu/Al IMC growth rate and thinner IMC thickness in Pd coated copper wires as compared with 4N copper wires. FIB studies show that Continuous cracks caused by stress were formed at the bond interface for 4N copper wires after PCT and THT tests; however, there was no crack for Pd-coated copper wires. During aging, the Pd-Cu solid solution layer affected the interdiffusion of Cu and Al and may dominate the IMC formation. This should contribute to the fact that the Pd-coated copper wires showed better bonding reliability than the 4N copper wires in copper wire bonding.
[1] Z. W. Zhong, “Fine and ultra-fine pitch wire bonding: challenges and solutions ,” Microelectron. Int., Vol. 26, No. 1, pp. 10-16, 2009.
[2] S. Murali, N. Srikanth and C. J. Vath, III, “An analysis of intermetallics formation of gold and copper ball bonding on thermal aging,” Mater. Res. Bull., Vol. 38, No. 4, pp.637-646, 2003.
[3] G. G. Harman, Wire Bonding in Microelectronics: Materials, Processes,Reliability, and Yield, 2nd Ed., McGraw-Hill, New York, USA, 1997.
[4] L. T. Nguyen, D. McDonald, A. R. Danker and P. Ng, “Optimization of copper wire bonding on Al-Cu metallization,” IEEE Trans. Comp. Packag. Manuf. Technol.– Part A, Vol. 18, No. 2, pp. 423-429, 1995.
[5] H. Xu, C. Liu, V. V. Silberschmidt and Z. Chen, “A re-examination of the mechanism of thermosonic copper ball bonding on aluminium metallization pads,” Scripta Mater., Vol. 61, No. 2, pp. 165-168, 2009.
[6] S. Kaimori, T. Nonaka and A. Mizoguchi,“The development of Cu bonding wire with oxidation-resistant metal coating,” IEEE Trans. Adv. Packag., Vol. 29, No. 2, pp. 227-231, 2006.
[7] T. Uno, “Bond reliability under humid environment for coated copper wire and bare copper wire”, Microelectron. Reliab., Vol. 51, No. 1, pp. 148-156, 2011
[8] T. Uno, “Enhancing bondability with coated copper bonding wire,” Microelectron. Reliab., Vol. 51, No. 1, pp. 88-96, 2011
[9] S. Kaimori, T. Nonaka and A. Mizoguchi, “Development of ‘hybrid bonding wire’,” SEI Tech. Rev., No. 63, pp. 14-18, 2006.
[10] T. Uno, K. Kimura and T. Yamada, “Surface-enhanced copper bonding wire for LSI and its bond reliability under humid environments,” Proc. 17th Euro. Microelectron. Packag. Conf., Rimini, Italy, 2009.
[11] M. Drozdov, G. Gur, Z. Atzmon and W. D. Kaplan, “Detailed investigation of ultrasonic Al-Cu wire-bonds: II. Microstructural evolution during annealing,” J. Mater. Sci., Vol. 43, No. 18, pp. 6038-6048, 2008.
[12] M. Drozdov, G. Gur, Z. Atzmon and W. D. Kaplan, “Detailed investigation of ultrasonic Al-Cu wire-bonds: I. Intermetallic formation
in the as-bonded state,” J. Mater. Sci., Vol. 43, No. 18, pp. 6029-6037, 2008.
[13] C. J. Hang, C. Q. Wang, M. Mayer, Y. H. Tian, Y. Zhou and H. H. Wang, “Growth behavior of Cu/Al intermetallic compounds and cracks in copper ball bonds during isothermal aging,” Microelectron. Reliab.,Vol. 48, No. 3, pp. 416-424, 2008.
[14] H. J. Kim, J. Y. Lee, K.-W. Paik, K.-W. Koh, J. Won, S. Choe, J. Lee, J.-T. Moon and Y.-J. Park, “Effects of Cu/Al intermetallic compound (IMC) on copper wire and aluminum pad bondability,” IEEE
Trans. Comp. Packag. Technol., Vol. 26, No. 2, pp. 367-374, 2003.
[15] H. Xu, C. Liu, V. V. Silberschmidt and Z. Chen, “Growth of intermetallic compounds in thermosonic copper wire bonding on
aluminum metallization,” J. Electron. Mater., Vol. 39, No. 1, pp. 124-131, 2010.
[16] Luke England and Tom Jiang, “Reliability of Cu Wire Bonding to Al Metallization”, ECTC, 2007.
[17] C.D. Breach, F.W. Wulff , “A brief review of selected aspects of the materials science of ball bonding”, Microelectronics Reliability 50 1–20,2010.
[18] H.T.G Hentzell, R.D. Thompson, K.N. Tu,” Interdiffusion in copper-aluminum thin film bilayers. I. Structure and kinetics of sequential compound formation”, J. Appl. Phys., Vol. 54, No. 12, pp. 6923-6928, 1983.
[19] 謝宗雍,”電子構裝技術簡介”,電子月刊第三卷第七期,1997年7月,p.57-p.76
[20] Gale WF, Totemeier TC, editors. 8th ed. Elsevier, 2004.
[21] JESD22-A104C, Temperature Cycling (TCT), JEDEC Solid State Technology Association, May 2005.
[22] JESD22-A103C, High Temperature Storage Life (HTST), JEDEC Solid State Technology Association, November 2004.
[23] JESD22-A101, Temperature and Humidity Test (THT), JEDEC Solid State Technology Association.
[24] JESD22-A102, Pressure Cooker Test (PCT), JEDEC Solid State Technology Association.
[25] Wulff, F. W. et al, "Characterisation of intermetallic growth in copper and gold ball bonds on aluminium metallization," Proc. of 6th Electronics Packaging Technology Conference, pp. 348-353, 2004.
[26] Saraswati et al, "High temperature storage (HTS) performance of copper ball bonding wires," Proc. of 7th Electronic Packaging Technology Conference, pp. 602-607, 2005.
[27] Singh, Inderjit, Sr. et al, "Enhancing Fine Pitch, High I/O Devices with Copper Ball Bonding," Proc. of 55th Electronic Components and Technology Conference, pp. 843-847, 2005.
[28] J. J. Stephens, Internal Memorandum, Sandia National Laboratories,
Albuquerque, NM, March 2, 1989.
[29] Aditya Kumar, Zhong Chen, “Interdependent Intermetallic Compound Growth in an Electroless Ni-P/Sn-3.5Ag Reaction Couple”, Journal of Electronic Materials, Vol. 40, No. 2, 2011
[30] 汪建民, “材料分析”,中國材料科學學會,1998.
[31] 陳俊淇,”電子束/聚焦離子束雙束系統應用介紹”, 國家奈米元件實驗室。
[32] J.I.Goldstein et al.,"Scanning Electron Microscopy and X-ray Microanalysis", 3rd Ed. ,2003.
[33] Jiunn Chen, Yi-Shao Lai, Yi-Wun Wang, C.R. Kao,” Investigation of growth behavior of Al–Cu intermetallic compounds in Cu
wire bonding”, Microelectronics Reliability 51 (2011) 125–129.
[34] Limei Cha,” A metastable HCP intermetallic phase in Cu-Al bilayer films”.
[35] Young Min Kim, Hee-Ra Roh, Sungtae Kim,and Young-Ho Kim,” Kinetics of Intermetallic Compound Formation at the Interface Between Sn-3.0Ag-0.5Cu Solder and Cu-Zn Alloy Substrates”, Journal of Electronic Materials, Vol. 39, No. 12, 2010.