| 研究生: |
蘇峻民 Su, Chun-Min |
|---|---|
| 論文名稱: |
三維動脈繞道流場之計算研究 Three-Dimensional Flow Computations for Arterial Bypass |
| 指導教授: |
李定智
Lee, Denz |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 171 |
| 中文關鍵詞: | 動脈繞道 、吻合術 、內膜增生 、血液動力學 、壁面剪應力 、數值模擬 |
| 外文關鍵詞: | hemodynamics, intimal hyperplasia, arterial bypass, anastomosis, wall shear stress, numerical simulation |
| 相關次數: | 點閱:94 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臨床上在治療阻塞性的主動脈病變時,動脈繞道手術是目前普遍應用且有效的方法之一。然而,其長短期的成功率一直無法有效地提高,短期上由於血栓形成,長期上則肇因內膜增生,以致最後必須再重複接受手術治療。在這由管壁內膜增厚導致繞道手術失敗的過程中,血液動力學因子已廣被接受為扮演重要的角色。本研究的目的,在於發展一套實用且可靠的計算工具以用來探討與動脈繞道相關的血液動力學環境,並期能據以提供較佳治療方式的參考。
在數值模擬的方法中,利用邊界契合座標系統及區域式格點法來處理複雜幾何外形。採用協變速度作為動量方程式的相依變數及非交錯式的格點配置,並以動量內插法求得控容面上的速度。程式並引入以MPI做為資料傳輸協定的個人電腦叢集平行運算,以減少計算所需的時間。
研究中所廣泛探討的外形為一完整的動脈繞道系統,包含部份或完全阻塞的主管,以及彎曲的繞道管。在初步的穩態流場探討中,進行了一系列的參數測試,包括雷諾數、吻接角度、阻塞位置,以及近端分流比率;各參數皆顯示出對流場獨特的影響。文中並闡述了繞道管的曲率以及插接處之兜帽外形對流場的作用。
本文接下來進一步考慮動脈繞道的三維特徵。首先藉由在繞道管的兩吻接處間引進一扭轉角度,對非平面的幾何特性進行系統性的探討,並發現在螺旋狀的繞道管中引致的轉動慣量明顯地改變了末端插接處下游的流場。其次則針對部分阻塞的動脈,透過考慮包括軸對稱與非對稱的動脈狹窄型態,闡明了主管面積縮減比例、栓塞結構的非對稱性及其在主管中相對於繞道管的位置關係等因素對流場的影響。本研究最後採用股骨動脈處之脈動波形及一經修改而使波峰較為和緩的變異波形,模擬動脈繞道的脈動流場。計算結果揭露了流場動態的本質及複雜的結構,並顯示出低且震盪之剪應力與內膜增生間可能的關連性。此外,比較結果亦指出若脈動波形呈現出高度震盪的特性,相應的穩態流場觀察對提供血液動力學的瞭解有其侷限性。
Graft-bypass surgery is at present a routine and effective revascularization procedure for occlusive arterial diseases. However, the long-term success of vascular grafts is often limited by the progression of intimal hyperplasia. Hemodynamics has now been widely accepted to play an important role in this pathological proliferation and subsequent graft failure. In hopes of providing insights towards better treatments, this thesis presents a practical and reliable computational tool to investigate the hemodynamic environment associated with arterial bypasses.
The numerical simulation techniques involve a boundary-fitted coordinate system and the zonal grid approach to deal with complex geometries. The covariant velocity components were selected as the dependent variable for the momentum equations, while the non-staggered grid arrangement together with a momentum interpolation scheme in obtaining cell-face velocities were employed. A PC cluster based parallel computing using MPI (message passing interface) for message-passing was embedded to reduce the time required for computations.
Flow in a complete arterial bypass system, which consists of a stenosed/occluded host artery and a curved bypass graft, was comprehensively studied. Parameters involved in the preliminary steady flow investigation include the inlet Reynolds number, anastomotic angle, occlusion site and proximal outflow division, while the distinct effect of each was elucidated. The influences of the bypass curvature and graft hood were also addressed.
Further three-dimensional features of the arterial bypass were then considered. The out-of-plane characteristics were examined systematically by introducing a twist angle on the bypass tube between the two anastomotic junctions. The rotational inertia established in the helical graft was found to markedly affect the downstream flow filed. Another geometric aspect of the bypass system elaborated was the morphology of the stenosis in a partially obstructed artery. By considering both axisymmetric and asymmetric stenoses, the effects of area reduced in the host artery, stenosis asymmetry and the locality of an asymmetric stenosis with respect to the bypass graft on the flow field were demonstrated. Finally, the pulsatile flow fields in an arterial bypass were illustrated using a femoral artery flow waveform as well as its modification. Results revealed the dynamic nature and complicated structures of pulsatile flow fields, and suggested a possible correlation between low and oscillating shear and the development of intimal hyperplasia. Moreover, comparison indicated that steady flow observations have limited capability in providing insights if the pulsatile waveform is highly oscillatory.
REFERENCES
[1] Zarins, C., Giddens, D., Bharadvaj, G., Sottiurai, V., Mabon, R., and Glagov, S., 1983, “Carotid Bifurcation Atherosclerosis: Quantitative Correlation of Plaque Localization With Flow Velocity Profiles and Wall Shear Stress,” Circ. Res., 53, pp. 502−514.
[2] Caro, C. G., Fitz-Gerald, J. M., and Schroter, R. C., 1971, “Atheroma and Arterial Wall Shear: Observation, Correlation and Proposal of a Shear Dependent Mass Transfer Mechanism for Atherogenesis,” Proc. Roy. Soc., London Ser. B, 177, pp. 109−159.
[3] Friedman, M. H., Hutchins, G. M, and Bargeron, C. B., 1981, “Correlation Between Intimal Thickness and Fluid Shear in Human Arteries,” Atherosclerosis, 39, p. 425.
[4] Schwartz, C. J., Valente, A. J., Spraque, E. A., Kelley, J. L., and Nerem, R. M., 1991, “The Pathogenesis of Atherosclerosis: An Overview,” Clin. Cardiol., 14, pp. 1−16.
[5] Grabowski, E. F., Frideman L. I., and Leonard, E. F., 1972, “Effects of Shear Rate on the Diffusion and Adhesion of Blood Platelets to a Foreign Surface,” Ind. Eng. Chem. Fundam., 11, pp. 224−232.
[6] Turitto, V. T., and Braumgartner, H. R., 1979, “Platelet Interaction With Subendothelium in Flowing Rabbit Blood: Effect of Blood Shear Rate,” Microvasc. Res., 17, pp. 38−54.
[7] Karino, T., 1986, “Microscopic Structure of Disturbed Flows in the Arterial and Venous Systems, and Its Implication in the Localization of Vascular Diseases,” Int. Angiol., 5, pp. 297−313.
[8] Archie, J. P., 1994, “Femoropopliteal Bypass With Either Adequate Ipsilateral Reversed Saphenous Vein or Obligatory Polytetrafluoroethylene,” Ann. Vasc. Surg., 8, pp. 475−484.
[9] Taylor, R. F., Loh, A., Mcfarland, R. J., Cox, M., and Chester, J. F., 1992, “Improved Techniques for PTFE Bypass Grafting: Long-Term Results Using Anastomotic Vein Patches,” Br. J. Surg., 79, pp. 348−354.
[10] Whittemore, A. D., Clowes, A. W., Couch, N. P., and Mannick, J. A., 1981, “Secondary Femoro-Popliteal Reconstruction,” Ann. Surg., 193, pp. 35−42.
[11] Clowes A. W., 1993, “Intimal Hyperplasia and Graft Failure,” Cardiovasc. Pathol., 2: (Suppl.), pp. 179S−186S.
[12] Kraiss, L. W., and Clowes A. W., 1997, “Response of the Arterial Wall to Injury and Intimal Hyperplasia,” The Basic Science of Vascular Disease, A. N. Sidawy et al., eds., Futura Publishing Co., New York, pp. 289−317.
[13] Golledge, J., 1997, “Vein Grafts: Haemodynamic Forces on the Endothelium – a Review,” Eur. J. Vasc. Endovasc. Surg., 14, pp. 333−343.
[14] Lemson, M. S., Tordoir, J. H. M., Daemen, M. J. A. P., and Kitslaar, P. J. E. H. M., 2000, “Intimal Hyperplasia in Vascular Grafts,” Eur. J. Vasc. Endovasc. Surg., 19, pp. 336−350.
[15] Imparato, A. M., Bracco, A., Kim, G.E., and Zeff, R., 1972, “Intimal and Neointimal Fibrous Proliferation Causing Failure of Arterial Reconstruction,” Surgery, 72, pp. 1007−1017.
[16] Echave, V., Koornick A., Haimov, M., and Jacobson, J., 1979, “Intimal Hyperplasia as a Complication of the Use of the Polytetrafluoroethylene Graft for Femoral-Popliteal Bypass,” Surgery, 86, pp.791−798.
[17] Sottiurai, V. S., Yao, J. S. T., Flinn, W. R., and Batson, R. C., 1983, “Intimal Hyperplasia and Neointima: An Ultrastructural Analysis of Thrombosed Grafts in Humans,” Surgery, 93, pp. 809−817.
[18] Bassiouny, H. S., White, S., Glagov, S., Choi, E., Giddens, D. P., and Zarins, C. K., 1992, “Anastomotic Intimal Hyperplasia: Mechanical Injury or Flow Induced,” J. Vasc. Surg., 15, pp. 708−717.
[19] Ballyk, P. D., Walsh, C., Butany, J., and Ojha, M., 1998, “Compliance Mismatch may Promote Graft-Artery Intimal Hyperplasia by Altering Suture-Line Stresses,” J. Biomech., 31, pp. 229−237.
[20] Rittgers, S. E., Karayannacos, P. E., Guy, J. F., Nerem, R. M., Shaw, G. M., Hostetler, J. R., and Vasko, J.S., 1978, “Velocity Distribution and Intimal Proliferation in Autologous Vein Grafts in Dogs,” Circ. Res., 42, pp.792−801.
[21] Crawshaw, H. M., Quist, W. C., Serrallach, E., Valeri, C. R., and Logerfo, F. W., 1980, “Flow Disturbance at the Distal End-to-Side Anastomosis ─ Effect of Patency of the Proximal Outflow Segment and Angle of Anastomosis,” Arch. Surg., 115(11), pp. 1280−1284.
[22] Morinaga, K., Okadome, K., Kuroki, M., Miyazaki, T., Muto, Y., and Inokuchi, K., 1985, “Effect of Wall Shear Stress on Intimal Thickening of Arterially Transplanted Autogenous Veins in Dogs,” J. Vasc. Surg., 2(3), pp. 430−433.
[23] Kohler, T. R., Kirkman, T. R., Kraiss, L. W., Zierler, B. K., and Clowes, A. W., 1991, “Increased Blood Flow Inhibits Neointimal Hyperplasia in Endo-Thelialized Vascular Grafts,” Circ. Res., 69, pp. 1557−1565.
[24] Geary, R. L., Kohler, T. R., Vergel, S., Kirkman, T. R., and Clowes, A. W., 1993, “Time Course of Flow-Induced Smooth Muscle Cell Proliferation and Intimal Thickening in Endothelialized Baboon Vascular Grafts,” Circ. Res., 74, pp. 14−23.
[25] Hofer, M., Rappitsch, G., Perktold, K., Trubel, W., and Schima, H., 1996, “Numerical Study of Wall Mechanics and Fluid Dynamics in End-to-Side Anastomoses and Correlation to Intimal Hyperplasia,” J. Biomech., 29, pp. 1297−1308.
[26] White, S. S., Zarins, C. K., Giddens, D. P., Bassiouny, H., Loth F., Jones, S. A., and Glagov, S., 1993, “Hemodynamic Patterns in Two Models of End-to-Side Vascular Graft Anastomoses: Effects of Pulsatility, Flow Division, Reynolds Number, and Hood Length,” ASME J. Biomech. Eng., 115, pp. 104−111.
[27] Lee, D., Chiu, Y. L., and Jen, C. J., 1997, “Platelet Adhesion onto the Wall of a Flow Chamber With an Obstacle,” Biorheology, 34, pp. 111−126.
[28] Ojha, M., 1994, “Wall Shear Stress Temporal Gradient and Anastomotic Intimal Hyperplasia,” Circ. Res., 74(6), pp. 1227−1231.
[29] Kleinstreuer, C., Lei, M., and Archie, J. P., 1996, “Flow Input Waveform Effects on the Temporal and Spatial Wall Shear Stress Gradients in a New Femoral Graft-Artery Connector,” ASME J. Biomech. Eng., 118, pp. 506−510.
[30] Lei, M., Kleinstreuer, C., and Archie, J. P., 1995, “Geometric Design Improvements for Femoral Graft-Artery Junctions Mitigating Restenosis,” J. Biomech., 29, pp. 1605−1614.
[31] Taylor, C., 1996, “A Computational Framework for Investigating Hemodynamic Factors in Vascular Adaptation and Disease,” Ph.D. thesis, Stanford University, Stanford, CA.
[32] Cole, J. S., Watterson, J. K., and O’Reilly, M. J. G., 2002, “Numerical Investigation of the Haemodynamics at a Patched Arterial Bypass Anastomosis,” Med. Eng. Phys., 24, pp. 393−401.
[33] Leuprecht, A., Perktold, K., Prosi, M., Berk, T., Trubel, W., and Schima, H., 2002, “Numerical Study of Hemodynamics and Wall Mechanics in Distal End-to-Side Anastomoses of Bypass Grafts,” J. Biomech., 35, pp. 225−236.
[34] Ku, J. P., Draney, M. T., Arko, F. R., Lee, W. A., Chan, F. P., Pelc, N. J., Zarins, C. K., and Taylor, C. A., 2002, “In Vivo Validation of Numerical Prediction of Blood Flow in Arterial Bypass Grafts,” Ann. Biomed. Eng., 30, pp. 743−752.
[35] Ojha, M., Richard, S. C. C., and Johnston, K. W., 1993, “Hemodynamics of a Sid-to-End Proximal Arterial Anastomosis Model,” J. Vasc. Surg., 17, pp. 646−655.
[36] Galego, S. J., Goldenberg, S., Ortiz, J. P., Gomes, P. d., and Ramacciotti, E., 2000, “Comparative Blood Flow Study of Arteriovenous Fistulae in Canine Femoral Arteries: Modified Latero-Lateral and End-Lateral Techniques,” Artif. Organs, 24, pp. 235−240.
[37] Hughes, P. E., Shortland, A. P., and How, T. V., 1996, “Visualization of Vortex Shedding at the Proximal Side-to-End Artery-Graft Anastomosis,” Biorheology, 33, pp. 305−317.
[38] Ojha, M., Ethier, C. R., Johnston, K. W., and Cobbold, R. S. C., 1990, “Steady and Pulsatile Flow Fields in an End-to-Side Arterial Anastomosis Model,” J. Vasc. Surg., 12, pp. 747−753.
[39] Ojha, M., 1993, “Spatial and Temporal Variations of Wall Shear Stress Within an End-to-Side Arterial Anastomosis Model,” J. Biomech., 26, pp. 1377−1388.
[40] Steinman, D. A., Vinh, B., Ethier, C. R., Ojha, M., Cobbold, R. S. C., and Johnston, K. W., 1993, “A Numerical Simulation of Flow in a Two-Dimensional End-to-Side Anastomosis Model,” ASME J. Biomech. Eng., 115, pp. 112−118.
[41] Loth, F., Jones, S. A., and Giddens, D. P., 1995, “Finite Element Solution of the Velocity and Wall Shear Stress Distribution Inside a Vascular Graft Under Steady Flow Conditions,” Bio-Med. Fluids Eng., 212, pp. 37−43.
[42] Jones, S. A., Giddens, D. P., Loth, F., Zarins C. K., Kajiya, F., Morita, I., Hiramatsu, O., Ogasawara, Y., and Tsujioka, K., 1997, “In-Vivo Measurements of Blood Flow Velocity Profiles in Canine Ilio-Femoral Anastomotic Bypass Grafts,” ASME J. Biomech. Eng., 119, pp. 30−38.
[43] Keynton, R. S., Rittgers, S. E., and Shu, M. C. S., 1991, “The Effect of Angle and Flow Rate Upon Hemodynamics in Distal Vascular Graft Anastomoses: An in Vitro Model Study,” ASME J. Biomech. Eng., 113, pp. 458−463.
[44] Ojha, M., Cobbold, R. S. C., and Johnston, K. W., 1994, “Influence of Angle on Wall Shear Stress Distribution for an End-to-Side Anastomosis,” J. Vasc. Surg., 19, pp. 1067−1073.
[45] Fei, D. Y., Thomas, J. D., and Rittgers, S. E., 1994, “The Effect of Angle and Flow Rate Upon Hemodynamics in Distal Vascular Graft Anastomoses: A Numerical Model Study,” ASME J. Biomech. Eng., 116, pp. 331−336.
[46] Staalsen, N. H., Ulrich, M., Winther, J., Pedersen, E. M., How, T., and Nygaard, H., 1995, “The Anastomosis Angle Does Change the Flow Fields at Vascular End-to-Side Anastomoses in Vivo,” J. Vasc. Surg., 21, pp. 460−471.
[47] Loth, F., Jones, S. A., Giddens, D. P., Bassiouny, H. S., Glagov, S., and Zarins, C. K., 1997, “Measurements of Velocity and Wall Shear Stress Inside a PTFE Vascular Graft Model Under Steady Flow Conditions,” ASME J. Biomech. Eng., 119, pp. 187−194.
[48] Keynton, R. S., Evancho, M. M., Sims, R. L., and Rittgers, S. E., 1999, “The Effect of Graft Caliber Upon Wall Shear Within in Vivo Distal Vascular Anastomoses,” ASME J. Biomech. Eng., 121, pp. 79−88.
[49] Steinman, D. A., Ethier, C. R., Zhang, X., Karpik, S. R., 1994, “Effects of Local Geometry on Anastomotic Flow Patterns,” Advances in Bioengineering, M. J. Askew, ed., BED 28, ASME Press, New York, pp. 433−434.
[50] Sherwin, S. J., Shah, O., Doorly, D. J., Peiro, J., Papaharilaou, Y., Watkins, N., Caro, C. G., and Dumoulin, C. L., 2000, “The Influence of Out-of-Plane Geometry on the Flow Within a Distal End-to-Side Anastomosis,” ASME J. Biomech. Eng., 122, pp. 86−95.
[51] Papaharilaou, Y., Doorly, D. J., and Sherwin, S. J., 2002, “The Influence of Out-of-Plane Geometry on Pulsatile Flow Within a Distal End-to-Side Anastomosis,” J. Biomech., 35, pp. 1225−1239.
[52] Moore, J. A., Steinman, D. A., Prakash, S., Johnston, K. W., and Ethier, C. R., 1999, “A Numerical Study of Blood Flow Patterns in Anatomically Realistic and Simplified End-to-Side Anastomoses,” ASME J. Biomech. Eng., 121, pp. 265−272.
[53] Hughes, P. E., and How, T. V., 1996, “Effects of Geometry and Flow Division on Flow Structures in Models of the Distal End-to-Side Anastomosis,” J. Biomechanics, 29, pp. 855−872.
[54] Li, X. M., and Rittgers, S. E., 2001, “Hemodynamic Factors at the Distal End-to-Side Anastomosis of a Bypass Graft With Different POS:DOS Flow Ratios,” ASME J. Biomech. Eng., 123, pp. 270−276.
[55] Ethier, C. R., Steinman, D. A., Zhang, X., Karpik S. R., and Ojha, M., 1998, “Flow Waveform Effects on End-to-Side Anastomotic Flow Patterns,” J. Biomech., 31, pp. 609−617.
[56] Bertolotti, C., and Deplano, V., 2000, “Three-Dimensional Simulations of Flow Through a Stenosed Coronary Bypass,” J. Biomech., 33, pp. 1011−1022.
[57] Kute, S. M., and Vorp, D. A., 2001, “The Effect of Proximal Artery Flow on the Hemodynamics at the Distal Anastomosis of a Vascular Bypass Graft: Computational Study,” ASME J. Biomech. Eng., 123, pp. 277−283.
[58] Cole, J. S., Watterson, J. K., and O’Reilly, M. J. G., 2002, “Is There a Haemodynamic Advantage Associated With Cuffed Arterial Anastomoses,” J. Biomech., 35, pp. 1337−1346.
[59] Lei, M., Kleinstreuer, C., and Archie, J. P., 1997, “Hemodynamic Simulations and Computer-Aided Designs of Graft-Artery Junctions,” ASME J. Biomech. Eng., 119, pp. 343−348.
[60] Lei, M., Archie, J. P., and Kleinstreuer, C., 1997, “Computational Design of a Bypass Graft That Minimizes Wall Shear Stress Gradients in the Region of the Distal Anastomosis,” J. Vasc. Surg., 25, pp. 637−646.
[61] Lei, M., Giddens, D. P., Jones, S. A., Loth, F., and Bassiouny, H., 2001, “Pulsatile Flow in an End-to-Side Vascular Graft Model: Comparison of Computations With Experimental Data,” ASME J. Biomech. Eng., 123, pp. 80−87.
[62] Keynton, R. S., Evancho, M. M., Sims, R. L., Rodway, N. V., Gobin, A., and Rittgers, S. E., 2001, “Intimal Hyperplasia and Wall Shear in Arterial Bypass Graft Distal Anastomoses: An In Vivo Model Study,” ASME J. Biomech. Eng., 123, pp. 464−473.
[63] Loth, F., Jones, S.A., Zarins, C. K., Giddens D. P., Nassar, R. F., Glagov, S., and Bassiouny, H. S., 2002, “Relative Contribution of Wall Shear Stress and Injury in Experimental Intimal Thickening at PTFE End-to-Side Arterial Anastomoses,” ASME J. Biomech. Eng., 124, pp. 44−51.
[64] Longest, P. W., and Kleinstreuer, 2003, “Numerical Simulation of Wall Shear Stress Conditions and Platelet Localization in Realistic End-to-Side Arterial Anastomoses,” ASME J. Biomech. Eng., 125, pp. 671−681.
[65] Chiu, J. J., 1992, “Computation of Three-Dimensional Branching Flows Using a Covariant Velocity Based Calculation Procedure and Zonal Grid Methods,” Ph.D. thesis, National Cheng Kung University, Tainan, Taiwan.
[66] Young, D. F., and Tsai, F. Y., 1973, “Flow Characteristics in Models of Arterial Stenoses – II. Unsteady flow,” J. Biomech., 6, pp. 547−559.
[67] Steinman D. A., and Ethier, C. R., 1994, “The Effect of Wall Distensibility on Flow in a Two-Dimensional End-to-Side Anastomosis,” ASME J. Biomech. Eng., 116, pp. 294−301.
[68] Perktold, K., Peter, R. O., Resch, M., and Langs, G., 1991, “Pulsatile Non-Newtonian Flow in Three-Dimensional Carotid Bifurcation Models: A Numerical Study of Flow Phenomena Under Different Bifurcation Angles,” ASME J. Biomech. Eng., 13, pp. 507−515.
[69] Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, D.C.
[70] Aris, R., 1962, Vectors, Tensors and Basic Equation of Fluid Mechanics, Prentice-Hall Inc. Englewood Cliffs, NJ.
[71] Melaaen, M. C., 1992, “Calculation of Fluid Flows With Staggered and Nonstaggered Curvilinear Nonorthogonal Grids − A Comparison,” Numer. Heat Tr. B-Fund., 21, pp. 21−39.
[72] Sharatchandra, M. C., and Rhode, D. L., 1994, “New, Strongly Conservative Finite-Volume Formulation for Fluid Flows in Irregular Geometries Using Contravariant Velocity Components: Part 2, Assessment,” Numer. Heat Tr. B-Fund., 26, pp. 53−62.
[73] Shyy, W., 1994 (revised printing 1997), Computational Modeling for Fluid Flow and Interfacial Transport, Elsevier, Amsterdam, The Netherlands.
[74] Shyy, W., Thakur, S., and Wright, J., 2002, “Second-Order Upwind and Central Difference Schemes for Recirculating Flow Computation,” AIAA J., 30, pp. 923−932.
[75] Lee, D., and Chiu, J. J., 1992, “Covariant Velocity-Based Calculation Procedure With Nonstaggered Grids for Computation of Pulsatile Flows,” Numer. Heat Tr. B-Fund., 21, pp. 269−286.
[76] Rhie, C. M., and Chow, W. L., 1983, “Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation,” AIAA J., 21, pp. 1525−1532.
[77] Majumdar, S., 1988, “Role of Underrelaxation in Momentum Interpolation for Calculation of Flow With Nonstaggered Grids,” Numer. Heat Tr., 13, pp. 125−132.
[78] Xu, H., and Zhang, C., 1999, “Study of the Effect of the Non-Orthogonality for Non-Staggered Grids ─ the Results,” Int. J. Numer. Meth. Fluids, 29, pp. 625−644.
[79] Rai, M. M., 1986, “A Conservative Treatment of Zonal Boundaries for Euler Equation Calculations,” J. Comput. Phys., 62, pp. 472−503.
[80] Zhao, S. H., 1992, “Investigation on the Interface Treatment of Zonal Grid Approach,” M.S. thesis, National Cheng Kung University, Tainan, Taiwan.
[81] Lee, D., and Tsuei, Y. M., 1987, “LT-GRID”, National Science Council Project Report No. CS75-0210-0006-04, Taipei, Taiwan, R.O.C.
[82] Chen, C. Y., 2002, “Numerical Simulation of Blood Flow Fields in an Abdominal Aorta,” Ph.D. thesis, National Cheng Kung University, Tainan, Taiwan.
[83] Papaharilaou, Y. Doorly, D. J., Sherwin S. J., Peiro, J., Griffith, C., Cheshire, N., Zervas, V., Anderson, J., Sanghera, B., Watkins, N., and Caro, C. G., 2002, “Combined MR Imaging and Numerical Simulation of Flow in Realistic Arterial Bypass Graft Models,” Biorheology, 39, pp. 525−531.
[84] Cavalcanti, S., 1995, “Hemodynamics of an Artery With Mild Stenosis,” J. Biomech., 28(4), pp. 387−399.
[85] Tu, C., and Deville, M., 1996, “Pulsatile Flow of Non-Newtonian Fluids Through Arterial Stenoses,” J. Biomech., 29(7), pp. 899−908.
[86] Bluestein, D., Niu, L., Schoephoerster, R. T., and Dewanjee, M. K., 1997, “Fluid Mechanics of Arterial Stenosis: Relationship to the Development of Mural Thrombus,” Ann. Biomed. Eng., 25, pp. 344−356.
[87] Huang, H., Modi, V. J., and Seymour, B. R., 1995, “Fluid Mechanics of Stenosed Arteries,” Int. J. Eng. Sci., 33, pp. 815−828.
[88] Henry, F. S., Collins, M. W., Hughes, P. E., and How, T. V., 1996, “Numerical Investigation of Steady Flow in Proximal and Distal End-to-Side Anastomoses,” ASME J. Biomech. Eng., 118, pp. 302−210.
[89] Berger, S. A., Talbot, L., and Yao, L.S., 1983, “Flow in Curved Pipes,” Annu. Rev. Fluid Mech., 15, pp. 461−512.
[90] Miller, J. H., Foreman, R. K., Ferguson, L., and Faris, I., 1984, “Interposition Vein Cuff for Anastomosis of Prosthesis to Small Artery,” Aust. NZ. J. Surg., 54, pp. 283−285.
[91] Caro, C., Doorly, D., Tarnawski, M., Scott, K., Long, Q., and Dumoulin, C., 1996, “Non-Planar Curvature and Branching of Arteries and Non-Planar-Type Flow,” Proc. R. Soc. London, Ser. A, 452, pp. 185−197.
[92] Tuttle, E., 1990, “Laminar Flow in Twisted Pipes,” J. Fluid Mech., 219, pp. 545−570.
[93] Zabielski, L., and Mestel, A., 1998, “Steady Flow in a Helically Symmetric Pipe,” J. Fluid Mech., 370, pp. 297−320.
[94] Doorly, D., Peiro, J., Sherwin, S., Shah, O., Caro, C., Tarnawski, M., Maclean, M., Dumoulin, C., and Axel, L., 1997, “Helix and Model Graft Flows: MRI Measurements and CFD Simulations,” Proc. ASME FED Meeting, ASME Paper No. FEDSM-97-3423.
[95] Ku, D. N., 1997, “Blood Flow in Arteries,” Annu. Rev. Fluid Mech., 29, pp. 399−434.
[96] Ku, D. N., Zarins, C. K., Giddens, D. P., and Glagov, S., 1985, “Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation: Positive Correlation Between Plaque Localization and Low and Oscillating Shear Stress,” Arteriosclerosis, 5, pp. 292−302.