簡易檢索 / 詳目顯示

研究生: 黃信盛
Huang, Shin-Sheng
論文名稱: 寬能隙β-Ga2O3金半接面與其電性隨溫度變化之研究
Study on fabrication and temperature-dependent electrical characteristics of β-Ga2O3 metal-semiconductor junction
指導教授: 洪茂峰
Houng, Mau-phon
共同指導教授: 李劍
Li, Jian V.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 84
中文關鍵詞: β-Ga2O3歐姆蕭特基缺陷
外文關鍵詞: β-Ga2O3, Ohmic contact, Schottky diodes, defect
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗研究中主要可分為三部分:探討鈦金與β-Ga2O3之歐姆接觸狀況並利用TEM和EDS分析介面關係;蕭特基方面透過利用溼式蝕刻、乾式蝕刻、熱退火處理來得到良好特性的Pt/β-Ga2O3蕭特基二極體,利用熱離子發射理論來推導其電性參數,例如低導通電阻、高能障和高整流比來證實本實驗製程方法可以得到好的Pt/β-Ga2O3蕭特基二極體,並更進一步利用變溫測量來取得變溫參數,得到蕭特基能障、內建電位和導通電阻的變溫曲線。本實驗最好的結果為蕭特基能障1.355eV、理想因子為1.02、飽和電流密度為5.88x10-17A/cm2,其中Richardson常數為 44.82A/cm2K2,非常接近理論值 41.11 A/cm2K2;缺陷偵測利用暫態電容和導納頻譜量測,找出缺陷位置在傳導帶以下 0.81eV 和0.1eV,其缺陷濃度分別為1.2x1016cm-3、4.2x1016cm-3、捕捉截面積分別為 1.1x10-14cm2、1.7x10-18cm2。

    The results of this experiment can be divided into four major projects: the first one is to investigate the ohmic contact results of titanium metal and β-Ga2O3. After the wet etching of the β-Ga2O3 substrate, the thermal annealing treatment of 400oC, 450oC, 470oC and 500oC is respectively performed. The difference in non-rectifying electrical properties is discussed, and the best ohmic thermal annealing condition is 450oC for one minute. Under the area width of 200μm and 1500μm, the total resistance is about 6 Ω, and the contact resistance is 0.78 Ω by the traditional TLM method. In addition, the thermal annealing parameter 500 oC was the worst condition, and the surface condition after thermal annealing 450 oC and thermal annealing 500oC was examined by TEM electron microscope and EDS elemental analysis. It can be found in TEM image and EDS analysis that the degree of interface element diffusion after thermal annealing 450oC does not cause too much substrate damage. The second research project is Pt /β-Ga2O3 Schottky diode. We have made Pt /β-Ga2O3 Schottky diode with good performance characteristics by wet etching, dry etching and thermal annealing. During the etching phase, it is found that under the condition of only organic cleaning, an abnormal rectification characteristic curve appears, like two Schottky diodes, one Schottky diode which is affected by defects and reduces energy barrier, and another One is a normal Schottky diode. After the hydrochloric acid etching for 5 minutes, the double Schottky diode effect can be effectively improved, but as a result, the electrical leakage current is still quite large. Finally, on the wet etching, the substrate is immersed in 85oC boiling hydrogen peroxide for five minutes to obtain a low leakage current Pt /β-Ga2O3 Schottky diode. The leakage current effect is less than the photocurrent effect, so it will appear electrically. Zero offset phenomenon, which proves Pt /β-Ga2O3 Schottky diode with low leakage current on wet etching. In dry etching, the best parameters are found to effectively reduce the on-resistance and series resistance of the Pt /β-Ga2O3 Schottky diode. The best parameters for dry etching are ICP-RIE (400w/30w) and the gas flow rate is BCl3/Ar (35sccm/5sccm), operating environment pressure is 1.33mPa, but the side effect of dry etching is to increase the saturation current density of Pt /β-Ga2O3 Schottky diode, so the next step is to effectively reduce the saturation current density of Pt /β-Ga2O3 Schottky diode by thermal annealing. Finally, using the thermal annealing process, it can be found that after the continuation of the above process, the thermal annealing 450oC can effectively reduce the saturation current density of the Pt /β-Ga2O3 Schottky diode, and slightly reduce the resistance value of the Pt /β-Ga2O3 Schottky diode. In addition, under the condition of thermal annealing of 500oC, the Pt /β-Ga2O3 Schottky diode has the lowest resistance value, but its saturation current density has not decreased effectively. Therefore, the built-in potentials of the two were analyzed by capacitance voltage measurement, and the surface condition after thermal annealing 450oC and thermal annealing 500oC was examined using TEM electron microscopy and EDS elemental analysis. Further analysis of the TEM image, using Fourier transform to obtain the equivalent of the lattice scattering image, and then using the inverse Fourier transform to find that the lattice spacing is changed, and we use thermionic emission theory to obtain the electrical parameters we prepared, Such as low on-resistance, high energy barrier and high rectification ratio, it is confirmed that the experimental process can obtain a good Pt /β-Ga2O3 Schottky diode.
    The third research project is the performance of electrical properties under variable temperature, using temperature-varying measurements to obtain parameters of temperature changes, Schottky barriers, built-in potentials and on-resistance temperature curves. The best result is Schottky energy barrier 1.355eV, saturation current density 5.88x10-17A/cm2, ideal factor 1.02, Richardson constant 44.82 A/cm2K2,, very close to the theoretical value of 41.11 A/cm2K2, and successfully obtained from 7.5K to 700K The electrical characteristics of the performance are the first to study the electrical properties of Pt /β-Ga2O3 Schottky diodes under a wide range of temperature changes. The last research project is to discuss defects, and defect detection can be divided into two ways. The first detection defect is the use of transient capacitance and temperature measurement in the range of 17oC to 57oC. The second detection defect is the use of admittance spectroscopy and temperature measurement in the range of 185K to 245K, and the Arrhenius plot can be found by the above two methods for finding defects, which can respectively find the defect location 0.81eV and 0.1eV below the conduction band. The defect concentrations are 1.2x1016cm-3 and 4.2x1016cm-3, respectively. The capture cross-sectional areas are 1.1x10-14cm2 and 1.7x10-18cm2, respectively. The results of the defect experimental data have been published in the Japanese Journal of Applied Physics under the title β-Ga2O3 defect study by steady-state capacitance spectroscopy.

    摘要 i 目錄 iii 表目錄 iv 圖目錄 v 第一章緒論 1 1-1前言 1 1-2研究動機 1 1-3 β-Ga2O3材料簡介 4 第二章理論基礎 7 2-1金屬半導體接觸 7 2-1-1 蕭特基接觸理論 9 2-1-2 歐姆接觸理論 18 2-2能障高度非理想效應 20 2-2-1 影像力降低 20 2-2-2 界面狀態 22 2-3能帶陷阱復合理論 (Shockley-Read-Hall) 24 2-4物理氣相沉積法 25 2-5量測系統簡介 28 2-5-1 電流電壓量測 (I-V) 28 2-5-2 電流溫度量測 (I-T) 30 2-5-3 電容電壓量測 (C-V) 30 2-5-4 導納頻譜量測 (C-f & G-f) 31 2-5-5 暫態電容量量測 (C-t) 32 2-5-6 深層能階暫態頻譜量測 (DLTS) 33 2-5-7 傳輸線模組量測 (TLM) 36 第三章實驗方法與量測儀器介紹 39 3-1實驗方法 39 3-1-1 β-Ga2O3基板的前置作業 39 3-1-2 蕭特基接觸Pt電極製備 40 3-1-3 歐姆接觸Ti-Au電極製備 41 3-1-4 乾式蝕刻處理 42 3-1-5 熱退火處理 42 3-2實驗製程設備介紹 43 3-2-1 晶圓切割機 (Wafer Dicing) 43 3-2-2 直流二極濺鍍機 (DC Sputter) 44 3-2-3 電子束蒸鍍機 (Electron Beam Evaporation) 44 3-2-4 電感耦合電漿反應離子蝕刻機 (ICP-RIE) 45 3-2-5 水平式爐管 (Horizontal Furnaces) 46 3-3實驗量測設備介紹 48 3-3-1 接觸角量測儀 (Contact Angle) 48 3-3-2 原子力顯微鏡 (Atomic Force Microscope, AFM) 48 3-3-3 穿透式電子顯微鏡 (Transmission Electron Microscope) 50 3-3-4 能量分析光譜儀 (Energy Dispersive Spectrometer, EDS) 52 第四章金半實驗結果與討論分析 53 4-1歐姆 53 4-1-1 鈦金歐姆 53 4-1-2 介面分析 55 4-2蕭特基二極體 59 4-2-1 表面溼式潔淨處理 59 4-2-2 乾式蝕刻處理 63 4-2-3 熱退火處理 66 4-2-4 變溫量測 69 4-2-5 介面分析 76 第五章β-Ga2O3缺陷分析 78 5-1缺陷分析 78 5-1-1 缺陷參數量測 78 5-1-2 缺陷比較 81 第六章結論未來展望 82 參考文獻 83

    【1】 Pearton, S. J., et al. "A review of Ga2O3 materials, processing, and devices." Applied Physics Reviews 5.1 (2018): 011301.
    【2】 S. M. Sze, Semiconductor Device Physics and Technology (1985).
    【3】 Donald A. Neamen, Semiconductor Physics and Device: Basic Principles.
    【4】 Higashiwaki, Masataka, et al. "Temperature-dependent capacitance–voltage and current–voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n––Ga2O3 drift layers grown by halide vapor phase epitaxy." Applied Physics Letters 108.13 (2016): 133503.
    【5】 Dieter K. Schroder, Semiconductor Material and Device Characterization.
    【6】 Little, Keith R. The Design and Construction of a Deep-level Transient Spectroscopy (DLTS) Apparatus. Diss. Indiana University of Pennsylvania, 1993.
    【7】 Yao, Yao, et al. "Electrical behavior of β-Ga2O3 Schottky diodes with different Schottky metals." Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 35.3 (2017): 03D113.
    【8】 Yang, Jian Cheng, et al. "Inductively coupled plasma etch damage in (-201) Ga2O3 Schottky diodes." Applied Physics Letters 110.14 (2017): 142101.
    【9】 Zhang, Liheng, et al. "Inductively-coupled-plasma reactive ion etching of single-crystal β-Ga2O3." Japanese Journal of Applied Physics 56.3 (2017): 030304.
    【10】 Yao, Yao, Robert F. Davis, and Lisa M. Porter. "Investigation of different metals as ohmic contacts to β-Ga2O 3: comparison and analysis of electrical behavior, morphology, and other physical properties." Journal of Electronic Materials 46.4 (2017): 2053-2060.
    【11】 Lee, Ming-Hsun, and Rebecca L. Peterson. "Interfacial reactions of titanium/gold ohmic contacts with Sn-doped β-Ga2O3." APL Materials 7.2 (2019): 022524.
    【12】 He, Qiming, et al. "Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics." Applied Physics Letters 110.9 (2017): 093503.
    【13】 Shun Lien Chuang, Physics of Optoelectronic Device.
    【14】 Huang, Shin-Sheng, et al. "β-Ga2O3 defect study by steady-state capacitance spectroscopy." Japanese Journal of Applied Physics 57.9 (2018): 091101.
    【15】 Zhang, Z., et al. "Deep level defects throughout the bandgap of (010) β-Ga2O3 detected by optically and thermally stimulated defect spectroscopy." Applied Physics Letters 108.5 (2016): 052105.
    【16】 Jian, Guangzhong, et al. "Characterization of the inhomogeneous barrier distribution in a Pt/(100) β-Ga2O3 schottky diode via its temperature-dependent electrical properties." AIP Advances 8.1 (2018): 015316.
    【17】 Lu, Xing, et al. "Schottky x-ray detectors based on a bulk β-Ga2O3 substrate." Applied Physics Letters 112.10 (2018): 103502.
    【18】 Yang, Jiancheng, et al. "Ga2O3 Schottky rectifiers with 1 ampere forward current, 650 V reverse breakdown and 26.5 MW. cm-2 figure-of-merit." AIP Advances 8.5 (2018): 055026.
    【19】 Farzana, Esmat, et al. "Influence of metal choice on (010) β-Ga2O3 Schottky diode properties." Applied Physics Letters110.20 (2017): 202102.
    【20】 Ahn, Shihyun, et al. "Temperature-dependent characteristics of Ni/Au and Pt/Au Schottky diodes on β-Ga2O3." ECS Journal of Solid State Science and Technology 6.1 (2017): P68-P72.
    【21】 Neal, Adam T., et al. "Donors and deep acceptors in β-Ga2O3." Applied Physics Letters 113.6 (2018): 062101.
    【22】 Ma, Nan, et al. "Intrinsic electron mobility limits in β-Ga2O3." Applied Physics Letters 109.21 (2016): 212101.
    【23】 Oishi, Toshiyuki, et al. "High-mobility β-Ga2O3 () single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact." Applied Physics Express 8.3 (2015): 031101.
    【24】 Oshima, Takayoshi, et al. "Wet etching of β-Ga2O3 substrates." Japanese Journal of Applied Physics 48.4R (2009): 040208.
    【25】 Hatakeyama, Tetsuo, and Takashi Shinohe. "Reverse characteristics of a 4H-SiC Schottky barrier diode." Materials Science Forum. Vol. 389. Trans Tech Publications Ltd., Zurich-Uetikon, Switzerland, 2002.
    【26】 Zhao, Xiaolong, et al. "Growth and characterization of Sn doped β-Ga2O3 thin films and enhanced performance in a solar-blind photodetector." Journal of Electronic Materials 46.4 (2017): 2366-2372.
    【27】 Aksenov, M. S., et al. "About the nature of the barrier inhomogeneities at Au/Ti/n-InAlAs (001) Schottky contacts." Applied Physics Letters 114.22 (2019): 221602.

    下載圖示 校內:2024-07-01公開
    校外:2024-07-01公開
    QR CODE