| 研究生: |
李駿閎 Li, Chun-Hung |
|---|---|
| 論文名稱: |
雙動式四汽缸史特靈引擎之動力模型分析 Dynamic Analysis of a Double Acting Four-Cylinder Stirling Engine |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 雙動式史特靈引擎 、四汽缸 、擺軛式傳動機構 、動力模型 、熱力模型 |
| 外文關鍵詞: | Double acting, Stirling engine, Wobble yoke mechanism, Dynamic model, Thermodynamic model |
| 相關次數: | 點閱:153 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討雙動式四汽缸史特靈引擎之動力特性,結合熱力模式、運動分析與動力模式,藉以模擬引擎實際運轉過程,作為設計雙動式四汽缸史特靈引擎之輔助參考。本論文所選擇之傳動機構為擺軛式機構,並分析四個汽缸之壓力,透過活塞並經由連桿傳遞至輸出端的過程。由機構之幾何關係,推導各連桿之位置、速度、加速度、角速度與角加速度向量關係,進而得出連桿之運動模式。於熱力模型中,將氣體腔室分為五個子腔室,分別為膨脹室、加熱器、再生器、冷卻器與壓縮室,並考慮其中工作流體之壓力、體積、溫度、質量變化與壓力損失。結合熱力模式得出的結果,於動力模式中計算得出最終之輸出扭矩,並計算引擎指示功、軸功、機械效率與熱效率。根據數值模擬之結果,填充1.768*10^-4 kg之氦氣,無負載之穩態轉速約為1800 rpm。當轉速為804 rpm時會有最大輸出軸功732.3 W,此時引擎總效率為11.7%。
This study is aimed to dynamic simulation of a double acting four-cylinder Stirling engine. By combining thermodynamic model, kinematic model and dynamic model, the engine operation can be efficiently simulated. The transmission mechanism which used in this study is wobble yoke mechanism. The analysis of the force transmission from pressure that acting on four piston surfaces and then to the output shaft is considered. With the kinematic and dynamic analysis of the mechanism, all the links’ vectors of positions, velocities, accelerations, angular velocities and angular accelerations are developed, and finally the dynamic model of mechanism is carried out. In the thermodynamic model, the chamber is divided to five sub-chambers, including expansion space, heater, regenerator, cooler and compression space. Pressure, volume, temperature, mass transfer and pressure loss of the working fluid in these sub-chambers are also considered. Results of pressures from the thermodynamic model are fed into the dynamic model so as to predict the positions of the moving parts. By combining the thermodynamic and dynamic models, the torque output, indicated power, shaft power, mechanical efficiency and heat efficiency are determined eventually. Using helium as the working fluid, the steady rotation speed of the engine is found to be about 1800 rpm. When engine rotation speed is at 804 rpm, a maximum output power of 732.3 watts, and overall efficiency of 11.7% are found.
[1]S. Shafiee, E. Topal, When will fossil fuel reserves be diminished? Energy policy. Vol.37, pp. 181-189, 2009.
[2]M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, A.W.Y. Ho-Baillie, Solar cell efficiency tables (version 37). Progress in photovoltaics: research and applications. Vol.19, pp. 84-92, 2011.
[3]A. Organ, T. Finkelstein, Air engines: the history, science, and reality of the perfect engine. Michigan: American Society of Mechanical Engineers press, 2011.
[4]C. Hargreaves, The Philips Stirling engine. Elsevier, 1991.
[5]B. Ross, Status of the emerging technology of Stirling machines. IEEE Aerospace and Electronic Systems Magazine Vol.10, pp. 34-39, 1995.
[6]W.B. Stine, R.B. Diver, A compendium of solar dish/Stirling technology. Sandia national labs., Albuquerque, NM (United States), 1994.
[7]A. Hawkes, M. Leach, Cost-effective operating strategy for residential micro-combined heat and power. Energy. Vol.32, pp. 711-723, 2007.
[8]D. Clucas, J. Raine, The WhisperGen: A strategy for commercial production. International Stirling engine conference and exhibition, pp. 159-168, 1997.
[9]D. Clucas, J. Raine, A new wobble drive with particular application in a Stirling engine. Proceedings of the institution of mechanical engineers, Part C: Journal of mechanical engineering science. Vol. 208, pp. 337-346, 1994.
[10]馮典樂,雙動四汽缸史特靈引擎之理論分析與設計,國立成功大學航空太空工程學系碩士學位論文,民國106年。
[11]I. Urieli, D.M. Berchowitz, Stirling cycle engine analysis. Taylor & Francis, 1984.
[12]R.A. Ackermann, Cryogenic regenerative heat exchangers. Springer, 2013.
[13]S.K. Boetcher, Natural convection from circular cylinders. Springer, 2014.
[14]F.P. Incropera, D.P Dwitt, T.L. Bergman, A.S. Lavine, Fundamentals of heat and mass transfer. John Wiley & Sons, 2011.
[15]Y.A. Cengel, M.A. Boles, Thermodynamics: an engineering approach. Sea 1000, 2002.
[16]W.M. Kays, A.L. London, Compact heat exchangers, McGraw-Hill, 1984.
[17]R.F. Barron, Cryogenic heat transfer. CRC press, 1999.
[18]T. Zhao, P. Cheng, Oscillatory pressure drops through a woven-screen packed column subjected to a cyclic flow. Cryogenics, Vol. 36, pp. 333-341, 1996.
[19]I. Tlili, A. Sa’ed, Thermodynamic evaluation of a second order simulation for Yoke Ross Stirling engine. Energy conversion and management. Vol.68, pp. 149-160, 2013.
[20]J.L. Meriam, L.G. Kraige, Engineering mechanics: dynamics. Vol. 2, John Wiley & Sons, 2012.
[21]C.H. Cheng, Y.J. Yu, Numerical model for predicting thermodynamic cycle and thermal efficiency of a beta-type Stirling engine with rhombic-drive mechanism. Renewable energy. Vol. 35, pp. 2590-2601, 2010.
[22]C.H. Cheng, Y.J. Yu, Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism via the combination of the thermodynamic and dynamic models. Renewable energy. Vol. 36, pp. 714-725, 2011.