簡易檢索 / 詳目顯示

研究生: 張登驛
Chang, Teng-Yi
論文名稱: 量子幾何相位的軌跡詮釋與其在超導量子元件上的應用
The Trajectory Interpretation of the Quantum Geometrical Phase and Its Application to Superconducting Quantum Devices
指導教授: 楊憲東
Yang, Ciann-Dong
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 184
中文關鍵詞: 複數力學量子力學非線性系統指標定理幾何相位超導體約瑟夫森元件
外文關鍵詞: Complex Mechanics, Quantum mechanics, Nonlinear System, Index Theorem, Geometrical Phase, Superconductor, Josephson Junction
相關次數: 點閱:151下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 幾何相位是在量子力學發展後期才開始漸漸被查覺,因為複數的波函數在絕熱狀態下做封閉路徑的運動必須滿足單一性,所以幾何相位在傳統量子力學中產生了。但由於傳統機率詮釋的量子力學中缺乏動態軌跡的概念,所以在於驗證這幾何相位的適用性上有較大的缺陷。複數力學,做為巨觀古典力學以及微觀量子力學之間的橋梁,賦予了量子力學所不足的非線性動態軌跡概念。
    由於複數非線性動態的加入,使得經典力學中分析非線性系統的工具得以導入使用,讓量子力學可以不再完全以機率來詮釋,它可以在複數空間中呈現另一種動態軌跡的面貌。複數力學對於完美詮釋量子系統的非線性複數薛丁格方程式重新解讀,發現量子系統其實是必須建構在複數空間之中的,並且在這複數空間中的量子系統必須導入一個量子位勢,使其滿足複數薛丁格方程式。
    本論文以複數力學所提供的非線性動態軌跡出發,導入古典力學中非線性系統的指標定理,重新定義出屬於量子力學在複數空間中的量子指標定理,並且找出相對應的指標以及相對應的物理意義,而幾何相位就是量子指標定理中的一種重要的幾何意義。對於波函數的幾何相位,在複數力學架構下可以用複數空間中的動態封閉軌跡直接計算證明,而其理所當然的滿足傳統量子力學中所強調的波函數單一性,完整解釋了傳統量子力學中幾何相位的部分。藉由量子指標定理在幾何相位上的計算與模擬,將傳統量子力學中的幾何相位與複數力學中的量子幾何相位緊密的結合。論文中的結果顯示兩者之間的相依特性,並且以電子在均勻磁場中的動態與幾何相位相關的Aharonov-Bohm效應實驗做比較。不僅如此,在論文中與許多實驗結果做比對,一再的證明量子幾何相位與幾何相位之間的等價關係。
    最後,作者將利用巨觀尺度下擁有量子行為的超導體元件做為量子幾何相位在工程領域的應用。約瑟夫森接面在超導體工程元件中是最基本的,它使用了巨觀尺度下同調的相位作為變數來描述特性,這與量子幾何相位的描述不謀而合。在複數力學的架構中,超導量子工程元件上的應用,相較於傳統量子力學的機率描述,多了份較直覺的粒子軌跡詮釋,在分析應用上更加的方便與簡潔。

    The geometrical phase is noticed after the development of conventional quantum mechanics gradually matured. It describes the single-value property of the wavefunction phase accumulation when varying adiabatically around a closed circuit. However, due to the lack of the concept of a dynamic trajectory in the probability-interpreted quantum mechanics, it is difficult to verify the applicability of the geometric phase. Complex mechanics, as a bridge between the macroscopic classical mechanics and the microscopic quantum mechanics, provides a nonlinear dynamic trajectory interpretation that cannot be revealed in conventional quantum mechanics.
    The nonlinear system analysis tools used in classical mechanics now can be applied to the quantum world via complex nonlinear dynamic representation. Hence, the quantum world can be displayed in terms of a dynamic trajectory interpretation instead of using probability interpretation. Complex mechanics provides the complex Schrödinger equation with a new description by considering the complex space extension and a quantum potential within this complex space.
    The dissertation begins with the introduction of the nonlinear dynamic trajectory on the basis of complex mechanics, than applies the index theorem in classical nonlinear systems to the quantum system. This is done by presenting the quantum index theorem and also is able to find the corresponding physical meanings for new defined quantum indices. It is found that the geometrical phase of the wavefunction gives an important geometrical meaning in the quantum index theorem. It shows that the closed loop dynamic trajectory in complex space satisfies the single-value property of the wavefunction and classically exhibits the geometrical phase which originally could not be explained properly in conventional quantum mechanics. The quantum geometrical phase interpreted by the dynamic trajectory has the coherent appearance of the geometrical phase proposed by probability-interpreted quantum mechanics. This coherence relation is discussed via the study of the electronic dynamics in a uniform magnetic field and its related Aharonov-Bohm effect. The simulation result of the study is compatible with the experimental result, which provides strong evidence that the trajectory interpretation in complex space is indeed a correct framework of quantum mechanics.
    Finally, the author actually applies the quantum geometrical phase to the field of engineering via a superconducting device which has macroscopic quantum behavior. Josephson junction is a basic device used in superconducting engineering. The characteristics of the junction are described by a fictitious particle’s tunneling behavior on the wavefunction phase difference plane in the macroscopic scale. Complex mechanics connects quantum mechanics to classical mechanics, providing the dynamic trajectory interpretation such that it can discuss and clarify those problems which are not represented fully in quantum mechanics.

    CHINESE ABSTRACT I ABSTRACT IV CHINESE ABSTRACT OF EACH CHAPTER VII CONTENTS XVII LIST OF TABLES XXI LIST OF FIGURES XXII NOMENCLATURE XXVII CHAPTER I INTRODUCTION 1 1.1 Motivation 1 1.2 Literature Survey 3 1.2.1 Berry’s Geometrical Phase 3 1.2.2 The Josephson Effect and Josephson Junction 5 1.3 Contributions 9 1.4 Organizations 12 CHAPTER II THE FOUNDATION OF COMPLEX MECHANICS 15 2.1 The Quantum Hamilton-Jacobi Theory 17 2.2 The Energy Conservation Law in the Complex Space 21 2.3 The One-Dimensional Complex Trajectory in Quantum Harmonic Oscillator 22 2.4 Electron Spin Dynamics in a Magnetic Field 25 CHAPTER III QUANTUM INDEX THEOREM 29 3.1 Index Theory on Complex Plane 31 3.1.1 From Classical Index Theory to Quantum Index Theorem 31 3.1.2 Stability and Jacobi Matrix on Complex Plane 34 3.2 Quantum Index Theorem 36 3.2.1 Momentum Index Theorem 36 3.2.2 Wavefunction Index Theorem 40 3.2.3 Wavefunction Derivative Index Theorem (The Combined Theorem) 42 3.2.4 The Physical Meaning of the Three Indices 43 3.3 The applications of the One-Dimensional Quantum Index Theorem to the Quantum Harmonic Oscillator 48 3.3.1 Eigen-Trajectory in Ground State n=0 48 3.3.2 Eigen-Trajectory in First-Excited State n=1 51 3.3.3 Eigen-Trajectory in Second-Excited State n=2 55 3.4 Summary 57 CHAPTER IV GEOMETRICAL PHASE IN COMPLEX MECHANICS 71 4.1 The Introduction of Berry Phase and Aharonov-Bohm Effect 72 4.2 Quantum Index Theorem Applied in an Electron Moving in a Uniform, Constant Magnetic Field in Direction 75 4.2.1 Electron Spin Dynamics in Magnetic Field in Ground State, nr=0, nth=0 76 4.2.2 Electron Spin Dynamics in Magnetic Field in nr=1, nth=0 State 81 4.2.3 Electron Spin Dynamics in Magnetic Field in nr=1, nth=+-1 State 85 4.3 The Quantum Geometrical Phase in Complex Space 88 4.3.1 Relationship between the Quantum Geometrical Phase and the Berry Phase 88 4.3.2 The Analysis of the Quantum Geometrical Phase in an Electron Spin Dynamics System 90 4.4 Experimental Verification of Quantum Geometrical Phase 93 4.5 Summary 98 CHAPTER V APPLICATIONS OF GEOMETRICAL PHASE TO SUPERCONDUCTING QUANTUM DEVICES 131 5.1 Introduction of the Josephson Tunnel Junction 132 5.1.1 Dc Josephson Effect 133 5.1.2 AC Josephson Effect 136 5.1.3 Newton’s Second Law in a Josephson Junction 138 5.1.4 Coherence Length in a Josephson Junction 140 5.2 The Coherence Length in the Josephson Tunnel Junction 142 5.3 Quantum Hamilton Dynamics in a Josephson Tunnel Junction 147 5.3.1 Josephson Effect in Josephson Junction 149 5.3.2 Quantum Hamilton Mechanics in a SFS Junction 152 5.4 Summary 155 CHAPTER VI CONCLUSIONS AND FUTURE WORKS 165 REFERENCES 171 PUBLICATION LIST 183 VITA 184

    [1] Aharonov, Y. and Anandan, J., 1987, “Phase Change During a Cyclic Quantum Evolution”, Physical Review Letters, 58, pp. 1593-1596.
    [2] Aharonov, Y. and Bohm, D., 1959, “Significance of Electromagnetic Potentials in the Quantum Theory”, Physical Review, 105, pp.485-491.
    [3] Aharonov, Y. and Bohm, D., 1961, “Further Considerations on Electromagnetic Potentials in the Quantum Theory”, Physical Review, 123, pp. 1511-1524.
    [4] Anderson, P. W., and Rowell, J. M., 1963, “Probable Observation of the Josephson Superconducting Tunneling Effect”, Physical Review Letters, 10, pp. 230-232.
    [5] Barone, A., and Paterno, G., 1982, “Physics and Application of the Josephson Effect”, Wiley, New York.
    [6] Bergeret, F. S., Volkov, A. F., and Efetov, K. B., 2001, “Josephson current in superconductor-ferromagnet structures with a nonhomogeneous magnetization”, Physical Review B, 64, pp. 134506 1-11.
    [7] Berry, M. V., 1984, “Quantal Phase Factors Accompanying Adiabatic Changes”, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 392, pp. 45-57.
    [8] Berry, M., 1985, “Classical Adiabatic Angles and Quantal Adiabatic Phase”, Journal of Physics A: Mathematical and General, 18, pp. 15-27.
    [9] Berry, M., 1987, “Quantum Phase Corrections from Adiabatic Iteration”, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 414, pp. 31-46.
    [10] Blais, A., and A. M. Zagoskin, 2000, “Operation of Universal Gates in a Solid-State Quantum Computer Based on Clean Josephson Junctions between d-Wave Superconductors”, Physical Review A, 61, pp. 042308 1-4.
    [11] Blum, Y., Tsukernik, A., Karpovski, M., and Palevski, A., 2002, “Oscillations of the Superconducting Critical Current in Nb-Cu-Ni-Cu-Nb Junctions”, Physical Review Letters, 89, pp. 187004 1-4.
    [12] Bohm, A., Mostrafazadeh, A., Koizumi, H., Niu, Q., and Zwanziger, J., 2003, “The Geometric Phase in Quantum Systems”, Springer Verlag.
    [13] Bulaevskiǐ, L. N., Kuziǐ, V. V., and Sobyanin, A. A., 1977 , “Superconducting System with Weak Coupling to the Current in the Ground State”, Journal of Experimental and Theoretical Physics Letters, 25, pp. 290-294.
    [14] Buzdin, A. I., Bulaevskiaii, L. N., and Panyukov, S. V., 1982, “Critical-current oscillations as a function of the exchange field and thickness of the ferromagnetic metal (F) in an S-F-S Josephson junction”, JETP Letters, 35, pp. 178-180.
    [15] Buzdin, A. I., Kupriyanov, M. Yu., and Vujic̀ić, B., 1991, “The oscillation of the critical temperature of S-F multylayers”, Physica C, 185-189, pp. 2025-2026.
    [16] Buzdin, A. I., Vujic̀ić, B., and Kupriyanov, M. Yu., 1992, Zh. Éksp. Teor. Fiz. 101, 231. [Sov. Phys. JETP 74, 124]
    [17] Canturk, M. and Kurt, E., 2007, “Phase-dependent Characteristics of a Superconducting Junction by using the Schrödinger Wave Function”, Physica Scripta, 76, pp. 634-640.
    [18] Chruscinski, D., and Jamiolkowski, A., 2004, “Geometric Phases in Classical and Quantum Mechanics”, Birkhauser.
    [19] Demler, E. A., Arnold, G. B., and Beasley, M. R., 1997, “Superconducting proximity effects in magnetic metals”, Physical Review B, 55, pp. 15174-15182.
    [20] Frolov, S. M., Van Harlingen, D. J., Oboznov, V. A., Bolginov, V. V., and Ryazanov, V. V., 2004, “Measurement of the Current-phase Relation of Superconductor Ferromagnet Superconductor pi Josephson Junctions”, Physical Review B, 70, pp. 144505 1-5.
    [21] Fulde, Peter and Ferrel, Richard A., 1964, “Superconductivity in a Strong Spin-exchange Field”, Physical Review, 135, pp. A550-A563.
    [22] Giaever, Ivar, 1960, “Electron Tunneling Between Two Superconductors”, Physical Review Letters, 5, pp. 464-466.
    [23] Giaever, Ivar, 1960, “Energy Gap in Superconductors Measured by Electron Tunneling”, Physical Review Letters, 5, pp. 147-148.
    [24] Giaever, Ivar, 1974, “Electron Tunneling and Superconductivity”, Reviews of Modern Physics, 46, pp. 245-250.
    [25] Goldstein, H., 1980, “Classical Mechanics”, Addison-Wesley Publishing Company, 2nd edition.
    [26] Golubov, A. A., Kupriyanov, M. Yu., and Il'ichev, E., 2004, “The Current-Phase Relation in Josephson Junctions”, Reviews of Modern Physics, 76, pp. 411-469.
    [27] Guichard, W., Levy, L.P., Pannetier, B., Fournier, T., Buisson, O., and Hekking, F.W.J., 2010, “Superconducting Quantum Nano-Circuits”, International Journal of Nanotechnology, 7, pp. 474-496.
    [28] Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., and Lounasmaa, O. V., 1993, “Magnetoencephalography-Theory, Instrumentation, and Applications to Noninvasive Studies of the Working Human Brain”, Reviews of Modern Physics, 65, pp. 413-497.
    [29] Hannay, J. H., 1985, “Angle Variable Holonomy in Adiabatic Excursion of an Integrable Hamiltonian”, Journal of Physics A, 18, pp. 221-230.
    [30] Ioffe, L. B., V. B. Geshkenbein, M. V. Feigelman, A. L., Fauchere, and G. Blatter, 1999, “Environmentally Decoupled sds-Wave Josephson Junctions for Quantum Computing”, Nature (London), 398, pp. 679-681.
    [31] Jaklevic,R. C., Lambe, John, Silver, A. H., and Mercereau, J. E., 1964, ”Quantum Interference Effects in Josephson Tunneling”, Physical Review Letters, 12, pp. 159-160.
    [32] Josephson, B. D., 1962, “Possible New Effects in Superconductive Tunneling”, Physics Letters, 1, pp.251-253.
    [33] Josephson, B. D., 1964, “Coupled Superconductors”, Reviews of Modern Physics, 36, pp. 261-220.
    [34] Josephson, B. D., 1965, “Supercurrents through Barriers”, Advances in Physics, 14, pp. 419-451.
    [35] Khalil, H. K., 1996, “Nonlinear System”, Prentice-Hill, New Jersey.
    [36] Koch, H., 2001, “SQUID Magnetocardiography: Status and Perspectives”, IEEE Transactions on Applied Superconductivity, 11, pp. 49-59.
    [37] Kontos, T., Aprili, M. , Lesueur, J., and Grison, X., 2001, “Inhomogeneous Superconductivity Induced in a Ferromagnet by Proximity Effect”, Physical Review Letters, 86, pp. 304-307.
    [38] Kontos, T., Aprili, M., Lesueur, J., Genêt, F., Stephanidis, B., amd Boursier, R., 2002, “Josephson Junction through a Thin Ferromagnetic Layer: Negative Coupling”, Physical Review Letters, 89, pp. 137007 1-4.
    [39] Krasnov, V. M., 2011, “Superconductivity and Josephson Effect: Physics and Applications”, testbook for the “Superconductivity and Josephson Effect: Physics and Applications” course at the Department of Physics at Stockholm University.
    [40] Krasnov, V. M., Ericsson, O., Intiso, S., Delsing, P., Oboznov, V. A., Prokofiev, A. S., and Ryazanov, V. V., 2005, “Planar SFS Josephson Junctions Made by Focused Ion Beam Etching”, Physica C, 418, pp. 16-22.
    [41] Krause, H.-J., Wolf, W., Glaas, W., Zimmermann, E., Faley, M. I., Sawade, G., Matteus, R., Neudert, G., Gampe, U., and Krieger, J., 2002, “SQUID Array for Magnetic Inspection of Prestressed Concrete Bridges”, Physica C, 368, pp. 91-95.
    [42] Larkin, Anatoly and Ovchinnikov, Yuri N., 1965, “Inhomogeneous State of Superconductors”, Soviet Physics JETP, 20, pp. 762-769.
    [43] Likharev, K. K., 1979, “Superconducting Weak Links”, Reviews of Modern Physics, 51, pp. 101-159.
    [44] Likharev, K. K., 1986, “Dynamics of Josephson Junctions and Circuits”, Gordon and Breach, New York.
    [45] Likharev, K. K.and Zorin, A. B., 1985, “Theory of the Bloch-Wave Oscillations in Small Josephson Junctions”, Journal of Low Temperature Physics, 59, pp. 347-382.
    [46] Lomparski, D., Krause, H.-J., v. Kreutzbruck, M., Becker, W., 2001, “Aircraft Wheel Testing with Remote Eddy Current Technique Using a HTS SQUID Magnetometer”, IEEE Transactions on Applied Superconductivity, 11, pp. 1279-1282.
    [47] Mead, C. A., 1987, “Molecular Kramers Degeneracy and Non-Abelian Adiabatic Phase Factors”, Physical Review Letters, 59, pp. 161-164.
    [48] Mukhopadhyay, S., Bhattacharyya, K., and Pathak, R. K., 2001, “Wilson-Sommerfeld Quantization Rule Revisited”, International Journal of Quantum Chemistry, 82, pp.113-125.
    [49] Mukunda, N. and Simon, R., 1993, “Quantum kinematic Approach to the Geometric Phase. I. General formalism”, Annals of Physics, 228, pp. 205-268.
    [50] Mukunda, N. and Simon, R., 1993, “Quantum kinematic Approach to the Geometric Phase. II. The Case of Unitary Group Representations”, Annals of Physics, 228, pp. 269-340.
    [51] Nakaya, Y., and Mori, H., 1992, “Magnetocardiography”, Clinical Physics and Physiological Measurement, 13, pp. 191-229.
    [52] Naschie, M. S. El, 2005, “Non-Euclidean Spacetime Structure and the Two-slit Experiment”, Chaos, Solitons & Fractals, 26, pp. 1-6.
    [53] Naschie, M. S. El, 2006, “On a Fuzzy Kähler-like Manifold which is Consistent with the Two Slit Experiment”, International Journal of Nonlinear Sciences and Numerical Simulation, 6, pp. 95-98.
    [54] Naschie, M. S. El, 2007, “Deterministic Quantum Mechanics versus Classical Mechanical Indeterminism”, International Journal of Nonlinear Sciences and Numerical Simulation, 8, pp. 5-10.
    [55] Oboznov, V. A., Bol’ginov, V. V., Feofanov, A. K., Ryazanov, V. V., and Buzdin, A. I., 2006, “Thickness Dependence of the Josephson Ground states of Superconductor-Ferromagnet-Superconductor Junctions”, Physical Review Letters, 96, pp. 197003 1-4.
    [56] Ono, Y., Kasai, N., Ishiyama, A., Miyashita, T., and Terada, Y., 2002, “A Basic Study on Algorithm for Automatic Diagnosis by Magnetocardiography”, Physica C, 368, pp. 45-49.
    [57] Page, D. N., 1987, “Geometrical Description of Berry's Phase”, Physical Review A, 36, pp. 3479-3481.
    [58] Robinson, J. W. A, Piano, S., Burnell, G., Bell, C., and Blamire, M. G., 2006, “Critical Current Oscillations in Strong Ferromagnetic Pi-Junctions”, Physical Review Letters, 97, pp. 177003 1-4.
    [59] Ryazanov, V. V., Oboznov, V. A., Rusanov, A. Yu., Veretennikov, A. V., Golubov, A. A. , and Aarts, J., 2001, “Coupling of Two Superconductors through a Ferromagnet: Evidence for a pi Junction”, Physical Review Letters, 86, pp. 2427-2430.
    [60] Ryazanov, V. V., Oboznov, V. A., Veretennikov, A. V., and Rusanov, A. Yu., 2001, “Intrinsically Frustrated Superconducting Array of Superconductor-Ferromagnet-Superconductor pi Junctions”, Physical Review B, 65, pp. 020501 1-4.
    [61] Ryazanov, V. V., Oboznov, V. A.,Rusanov, A. Yu., Veretennikov, A. V.,Golubov, A. A., and Aarts, J., 2001, “Coupling of Two Superconductors through a Ferromagnet: Evidence for a pi junction”, Physical Review Letters, 86, pp. 2427-2430.
    [62] Schmidt, V. V., 1997, “The Physics of Superconductor”, Springer, Berlin.
    [63] Segert, J., 1987, “Photon Berry's Phase as a Classical Topological Effect”, Physical Review A, 36, pp. 10-15.
    [64] Shapere, A. and Wilczek, F., 1989, “Geometric Phases in Physics”, World Scientific, Singapore.
    [65] Silver, A. H., and Zimmerman, J. E., 1965, “Quantum Transitions and Loss in Multiply Connected Superconductors”, Physical Review Letters, 15, pp. 888-891.
    [66] Silver, A. H., and Zimmerman, J. E., 1967, “Quantum States and Transitions in Weakly Connected Superconducting Rings”, Physical Review Letters, 157, pp. 317-341.
    [67] Simon, B., 1983, “Holonomy, the Quantum Adiabatic Theorem, and Berry's Phase”, Physical Review Letters, 51, pp. 2167-2170.
    [68] Sommerfeld, A, 1916, “Zur Quantentheorie der Spektrallinien”, Annalen der Physik, 356, pp. 1-94.
    [69] Surgers, C., Hoss, T., Schonenberger, C., and Strunk, C., 2002, “Fabrication and superconducting properties of nanostructured SFS contacts”, Journal of Magnetism and Magnetic Materials, 240, pp. 598-600.
    [70] Suter, Dieter, Gerard C. Chingas, Robert A. Harris, and Alexander pines, 1986, “Berry's phase in magnetic resonance”, Molecular Physics, 61, pp. 1327-1340.
    [71] Suter, Dieter, K. T. Mueller, and A. Pines, 1988, “Study of the Aharonov-Anandan Quantum Phase by NMR Interferometry”, Physical Review Letters, 60, pp. 1218-1220.
    [72] Terzioglu, E., and M. R. Beasley, 1998, “Complementary Josephson Junction Devices and Circuits: A Possible New Approach to Superconducting Electronics”, IEEE Transactions on Applied Superconductivity, 8, pp. 48-53.
    [73] Tomita, Akira and Y. Chiao, Raymond, 1986, “Observation of Berry's topological phase by use of an optical fiber”, Physical Review Letters, 57, pp. 937-940.
    [74] Veretennikov, Alexander V., Ryazanov, Valery V., Oboznov, Vladimir A., Rusanov, Alexander Yu.,Larkin, Victor A., and Aarts ,Jan, 2000, “Supercurrents through the Superconductor Ferromagnet Superconductor (SFS) Junctions”, Physica B, 495, pp. 284-288.
    [75] Vrba, J., 2002, “Magnetoencephalography: the Art of Finding a Needle in a Haystack”, Physica C, 368, pp. 1-9.
    [76] Wilczek, F. and Zee, A., 1984, “Appearance of Gauge Structure in Simple Dynamical Systems”, Physical Review Letters, 52, pp. 2111-2114.
    [77] Wilson, William, 1915, “The Quantum-Theory of Radiation and Line Spectra”, Philosophical Magazine Series 6, 29, pp. 795-802.
    [78] Xiao, Di, Chang, Ming-Che, and Niu,Qian, 2010, “Berry Phase Effects on Electronic Properties”, Reviews of Modern Physics, 82, pp.1959-2007.
    [79] Yang, C. D., 2006, “Modeling Quantum Hamilton Oscillator in Complex Domain”, Chaos, Solitons & Fractals, 30, pp. 342-362.
    [80] Yang, C. D., 2006, “On Modeling and Visualizing Single-Electron Spin Motion”, Chaos, Solitons & Fractals, 30, pp. 41-50.
    [81] Yang, C. D., 2006, “Quantum Hamilton Mechanics: Hamilton Equations of Quantum Motion, Origin of Quantum Operators, and Proof of Quantization Axiom”, Annals of Physics, 321, pp. 2876-2926.
    [82] Yang, C. D., 2007, “Quantum Motion in Complex Space”, Chaos, Solitons & Fractals, 33, pp. 1073-1092.
    [83] Yang, C. D., 2008, “Trajectory Interpretation of the Uncertainty Principle in 1D Systems Using Complex Bohmian Mechanics”, Physics Letters A, 372, pp. 6240-6253.
    [84] Yang, C. D., 2009, “Stability and Quantization of Complex-Valued Nonlinear Quantum Systems”, Chaos, Solitons & Fractals, 42, pp. 711-723.
    [85] Yang, C. D., 2010, “Complex Mechanics, Progress in Nonlinear Science”, Asian Academic Publisher, Hong Kong.
    [86] Yanson, I. K., Svistunov, V. M., and Dmitrenko, I. M., 1965, “Experimental Observation of the Tunnel Effect for Cooper Pairs with the Emission of Photons”, Soviet Physics JETP, 21, pp. 650-652.
    [87] Zagoskin, A. M., 2002, “d-Wave Superconductors and Quantum Computers”, Physica C, 368, pp. 305-309.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE