簡易檢索 / 詳目顯示

研究生: 楊硯翔
Yang, Yan-Siang
論文名稱: 老化及運動對神經膠質細胞-神經元乳酸穿梭的影響
Effect of aging and exercise on astrocyte-neuron lactate shuttle
指導教授: 郭余民
Kuo, Yu-Min
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 35
中文關鍵詞: 老化運動學習與記憶神經可塑性星形膠質細胞-神經元乳酸穿梭
外文關鍵詞: Aging, Exercise, Learning and memory, Synaptic plasticity, Astrocyte-neuron lactate shuttle
相關次數: 點閱:141下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 海馬回神經可塑性和相關學習與記憶的能力會因老化而下降;相反的,長期中強度的運動則能有效增加年輕動物海馬回神經可塑性和記憶。最近有研究指出,海馬回的星形膠質細胞-神經元乳酸穿梭(ANLS)對於形成海馬回相關記憶,扮演重要角色。然而,老化和運動是否會影響海馬回ANLS和其在記憶形成中的作用,則仍不清楚。本論文的目的是研究老化和運動對海馬回ANLS和神經可塑性的影響。我們把年輕(3個月)、中年(12個月)和老年(18個月)小鼠進行為期4週的中等強度跑步機訓練後,測量他們的海馬回ANLS蛋白和記憶相關突觸蛋白的表現量。結果顯示,海馬回之glutamine synthetase、connexin-30、monocarboxylate transporter-4這3種蛋白的蛋白表現量,在中年增加,而connexin-43則在老年增加;顯示在中、老年時星狀膠質細胞可能會以代償作用,提昇ANLS系統來維持神經元運作所需之能量。4 週的跑步機運動訓練增加synaptotagmin-IV、glutamine synthetase、monocarboxylate transporter-2與monocarboxylate transporter-4在中、老年的表現量,顯示長期運動訓練可強化老化小鼠之神經可塑性和ANLS系統。總結本研究,老化及運動透過調節不同之神經可塑性和ANLS相關蛋白的表現,以不同方式影響學習和記憶的能力。

    Aging impairs hippocampal neuroplasticity and hippocampus-related learning and memory. In contrast, long-term moderate-intensity running effectively increases hippocampal neuroplasticity and memory in young animals. It has been suggested that the function of hippocampal astrocyte-neuron lactate shuttle (ANLS) is essential for the formation of hippocampus-related memory. However, whether aging and exercise affect the hippocampal ANLS and its role in memory formation remain unclear. The objective of this study is to investigate the effects of exercise on hippocampal ANLS and neuroplasticity during aging. Young (3 months), middle-aged (12 months), and old (18 months) mice underwent moderate-intensity treadmill running for 4 weeks, and their hippocampal ANLS and memory-associated synaptic proteins were measured. The results showed that levels of glutamine synthase, connexin-30, monocarboxylate transporter-4 were increased in the middle-aged mice, while levels of connexin-43 were increased in the old mice. These findings suggest that compensatory responses may occur in astrocytes in order to maintain the aged-related deficiency in energy supply to neurons in the hippocampus. Treadmill running increased the levels of synaptotagmin-IV, glutamine synthase, monocarboxylate transporter-2 and monocarboxylate transporter-4 in the middle-aged and old mice. These findings suggest that exercise training may upregulate the synaptic plasticity-related and ANLS-related proteins in aging mice. Taken together, this study suggests that via regulations of different synaptic plasticity- and ANLS-related proteins, aging and exercise differentially regulate the performance of learning and memory.

    中文摘要 ………………………………………………………………………… I 英文延伸摘要 ……………………………………………………………………II 致謝 ……………………………………………………………………………… V 目錄 …………………………………………………………………………… VI 表目錄 ………………………………………………………………………… VII 圖目錄 ……………………………………………………………………… VIII 第一章 緒論 …………………………………………………………………… 1 第二章 假設及目標 …………………………………………………………… 6 第三章 材料與方法 …………………………………………………………… 8 第四章 結果 …………………………………………………………………… 18 第五章 討論 …………………………………………………………………… 20 第六章 結論 …………………………………………………………………… 23 第七章參考 文獻 ……………………………………………………………… 24 第八章 表說明 ………………………………………………………………… 30 第八章 圖說明 ………………………………………………………………… 31

    Attwell, D., & Laughlin, S. B. (2001). An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab, 21(10), 1133-1145.
    Bergles, D. E., & Jahr, C. E. (1998). Glial contribution to glutamate uptake at Schaffer collateral-commissural synapses in the hippocampus. J Neurosci, 18(19), 7709-7716.
    Bernardi, C., Tramontina, A. C., Nardin, P., Biasibetti, R., Costa, A. P., Vizueti, A. F., & Goncalves, C. A. (2013). Treadmill exercise induces hippocampal astroglial alterations in rats. Neural Plast, 2013, 709732.
    Bird, C. M., & Burgess, N. (2008). The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci, 9(3), 182-194.
    Brown, A. M., Baltan Tekkok, S., & Ransom, B. R. (2004). Energy transfer from astrocytes to axons: the role of CNS glycogen. Neurochem Int, 45(4), 529-536.
    Brown, B. M., Peiffer, J. J., & Martins, R. N. (2013). Multiple effects of physical activity on molecular and cognitive signs of brain aging: can exercise slow neurodegeneration and delay Alzheimer's disease? Mol Psychiatry, 18(8), 864-874.
    Chen, M. J., & Russo-Neustadt, A. A. (2009). Running exercise-induced up-regulation of hippocampal brain-derived neurotrophic factor is CREB-dependent. Hippocampus, 19(10), 962-972.
    Clark, P. J., Bhattacharya, T. K., Miller, D. S., & Rhodes, J. S. (2011). Induction of c-Fos, Zif268, and Arc from acute bouts of voluntary wheel running in new and pre-existing adult mouse hippocampal granule neurons. Neuroscience, 184, 16-27.
    Coco, M., Caggia, S., Musumeci, G., Perciavalle, V., Graziano, A. C., Pannuzzo, G., & Cardile, V. (2013). Sodium L-lactate differently affects brain-derived neurothrophic factor, inducible nitric oxide synthase, and heat shock protein 70 kDa production in human astrocytes and SH-SY5Y cultures. J Neurosci Res, 91(2), 313-320.
    Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci, 30(9), 464-472.
    da Cunha, M. J., da Cunha, A. A., Ferreira, A. G., Machado, F. R., Schmitz, F., Lima, D. D., & Wyse, A. T. (2012). Physical exercise reverses glutamate uptake and oxidative stress effects of chronic homocysteine administration in the rat. Int J Dev Neurosci, 30(2), 69-74.
    De Roo, M., Klauser, P., Garcia, P. M., Poglia, L., & Muller, D. (2008). Spine dynamics and synapse remodeling during LTP and memory processes. Prog Brain Res, 169, 199-207.
    Duzel, E., van Praag, H., & Sendtner, M. (2016). Can physical exercise in old age improve memory and hippocampal function? Brain, 139(Pt 3), 662-673.
    Erickson, K. I., Prakash, R. S., Voss, M. W., Chaddock, L., Heo, S., McLaren, M.& Kramer, A. F. (2010). Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume. J Neurosci, 30(15), 5368-5375.
    Escartin, C., & Rouach, N. (2013). Astroglial networking contributes to neurometabolic coupling. Front Neuroenergetics, 5, 4.
    Finegold, J. A., Asaria, P., & Francis, D. P. (2013). Mortality from ischaemic heart disease by country, region, and age: statistics from World Health Organisation and United Nations. Int J Cardiol, 168(2), 934-945.
    Fukui, K., Onodera, K., Shinkai, T., Suzuki, S., & Urano, S. (2001). Impairment of learning and memory in rats caused by oxidative stress and aging, and changes in antioxidative defense systems. Ann N Y Acad Sci, 928, 168-175.
    Ge, S., Yang, C. H., Hsu, K. S., Ming, G. L., & Song, H. (2007). A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron, 54(4), 559-566.
    Gosso, M. F., de Geus, E. J., van Belzen, M. J., Polderman, T. J., Heutink, P., Boomsma, D. I., & Posthuma, D. (2006). The SNAP-25 gene is associated with cognitive ability: evidence from a family-based study in two independent Dutch cohorts. Mol Psychiatry, 11(9), 878-886.
    Hamilton, G. F., & Rhodes, J. S. (2015). Exercise Regulation of Cognitive Function and Neuroplasticity in the Healthy and Diseased Brain. Prog Mol Biol Transl Sci, 135, 381-406.
    Hill, J. J., Hashimoto, T., & Lewis, D. A. (2006). Molecular mechanisms contributing to dendritic spine alterations in the prefrontal cortex of subjects with schizophrenia. Mol Psychiatry, 11(6), 557-566.
    Howarth, C., Gleeson, P., & Attwell, D. (2012). Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab, 32(7), 1222-1232.
    Huang, A. M., Jen, C. J., Chen, H. F., Yu, L., Kuo, Y. M., & Chen, H. I. (2006). Compulsive exercise acutely upregulates rat hippocampal brain-derived neurotrophic factor. J Neural Transm (Vienna), 113(7), 803-811.
    Ivanisevic, J., Stauch, K. L., Petrascheck, M., Benton, H. P., Epstein, A. A., Fang, M., & Siuzdak, G. (2016). Metabolic drift in the aging brain. Aging (Albany NY), 8(5), 1000-1020.
    Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA : Cancer J Clin, 61(2), 69-90.
    Khatri, N., & Man, H. Y. (2013). Synaptic activity and bioenergy homeostasis: implications in brain trauma and neurodegenerative diseases. Front Neurol, 4, 199.
    Lange-Asschenfeldt, C., & Kojda, G. (2008). Alzheimer's disease, cerebrovascular dysfunction and the benefits of exercise: from vessels to neurons. Exp Gerontol, 43(6), 499-504.
    Lee, T. H., Jang, M. H., Shin, M. C., Lim, B. V., Kim, Y. P., Kim, H., & Kim, C. J. (2003). Dependence of rat hippocampal c-Fos expression on intensity and duration of exercise. Life Sci, 72(12), 1421-1436.
    Lin, T. W., Shih, Y. H., Chen, S. J., Lien, C. H., Chang, C. Y., Huang, T. Y., & Kuo, Y. M. (2015). Running exercise delays neurodegeneration in amygdala and hippocampus of Alzheimer's disease (APP/PS1) transgenic mice. Neurobiol Learn Mem, 118, 189-197.
    Llinas, R., Lang, E. J., & Welsh, J. P. (1997). The cerebellum, LTD, and memory: alternative views. Learn Mem, 3(6), 445-455.
    Lustig, C., Shah, P., Seidler, R., & Reuter-Lorenz, P. A. (2009). Aging, training, and the brain: a review and future directions. Neuropsychol Rev, 19(4), 504-522.
    Meyer, D., Bonhoeffer, T., & Scheuss, V. (2014). Balance and stability of synaptic structures during synaptic plasticity. Neuron, 82(2), 430-443.
    Newman, L. A., Korol, D. L., & Gold, P. E. (2011). Lactate produced by glycogenolysis in astrocytes regulates memory processing. PLoS One, 6(12), e28427.
    O'Shea, A., Cohen, R. A., Porges, E. C., Nissim, N. R., & Woods, A. J. (2016). Cognitive Aging and the Hippocampus in Older Adults. Front Aging Neurosci, 8, 298.
    Phelps, E. A. (2004). Human emotion and memory: interactions of the amygdala and hippocampal complex. Curr Opin Neurobiol, 14(2), 198-202.
    Pinel, C., Coxam, V., Mignon, M., Taillandier, D., Cubizolles, C., Lebecque, P., & Meynial-Denis, D. (2006). Alterations in glutamine synthetase activity in rat skeletal muscle are associated with advanced age. Nutrition, 22(7-8), 778-785.
    Rothstein, J. D., Martin, L., Levey, A. I., Dykes-Hoberg, M., Jin, L., Wu, D., & Kuncl, R. W. (1994). Localization of neuronal and glial glutamate transporters. Neuron, 13(3), 713-725.
    Rouach, N., Koulakoff, A., Abudara, V., Willecke, K., & Giaume, C. (2008). Astroglial metabolic networks sustain hippocampal synaptic transmission. Science, 322(5907), 1551-1555.
    Takimoto, M., & Hamada, T. (2014). Acute exercise increases brain region-specific expression of MCT1, MCT2, MCT4, GLUT1, and COX IV proteins. J Appl Physiol (1985), 116(9), 1238-1250.
    Tapia-Arancibia, L., Aliaga, E., Silhol, M., & Arancibia, S. (2008). New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Res Rev, 59(1), 201-220.
    Tsai, S. F., Chen, P. C., Calkins, M. J., Wu, S. Y., & Kuo, Y. M. (2016). Exercise Counteracts Aging-Related Memory Impairment: A Potential Role for the Astrocytic Metabolic Shuttle. Front Aging Neurosci, 8, 57.
    Voss, M. W., Vivar, C., Kramer, A. F., & van Praag, H. (2013). Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn Sci, 17(10), 525-544.
    Wu, C. W., Chen, Y. C., Yu, L., Chen, H. I., Jen, C. J., Huang, A. M., & Kuo, Y. M. (2007). Treadmill exercise counteracts the suppressive effects of peripheral lipopolysaccharide on hippocampal neurogenesis and learning and memory. J Neurochem, 103(6), 2471-2481.
    Yang, Q. G., Chen, G. H., Wang, F., & Wang, L. H. (2015). Hippocampal synaptotagmin-4 is correlated with impaired spatial learning and memory in SAMP8 mice. Neurosci Lett, 607, 7-12.
    Yang, T. T., Lo, C. P., Tsai, P. S., Wu, S. Y., Wang, T. F., Chen, Y. W., & Kuo, Y. M. (2015). Aging and Exercise Affect Hippocampal Neurogenesis via Different Mechanisms. PLoS One, 10(7), e0132152.


    無法下載圖示 校內:2022-01-10公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE