| 研究生: |
賴宏威 Lai, Hung-Wei |
|---|---|
| 論文名稱: |
基於阻力最佳化之中高速艇船型輔助設計工具 Hull Design Assisting Tool Based on Optimized Resistance for Middle-High Speed Ships |
| 指導教授: |
陳政宏
Chen, Jeng-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 中高速艇 、系列船形設計 、阻力最佳化 、輔助設計 |
| 外文關鍵詞: | Middle-high speed hull forms, Systematic series design, Resistance Optimization, Design assisting |
| 相關次數: | 點閱:138 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
造船工業使用螺旋式設計法已行之有年,在船舶開發的初期階段,船形設計自始至終都是船舶工程的精華所在,乘載人類歷史的船舶,其流線造型所富含的歷史、人文、科學發展、工程演進,除了流線外觀美麗之外,更是達成人類遠渡大洋的重要發明,然而在初期訂定船形後,船舶的流體靜/動力性能就已一定程度定形,船殼線形會直接影響到1.流體靜力中的船舶靜穩度,2.流體動力中的船舶阻力,3.耐海性能受排水體積與形狀、載重影響,4.操縱性能,迴轉響應與迴旋半徑由船舶設計的長寬比決定,而船殼形式也影響其轉彎時呈現重心外拋或重心內傾的模式;在設計階段中,例如在船舶阻力預估上,又會因船殼設計的形式,滑航艇及排水艇兩者所適用的設計噸位與設計船速具有明顯差異,其在航行加速的過程中,阻力成長的趨勢也差異甚鉅,造成無法使用單一工囊括所有使用狀況。
本研究綜合整理了14個中高速系列船型,並整合5種阻力性能估算法,透過建置一個用Excel試算表估算阻力之輔助設計工具,整理各船型在不同細長比下之預估阻力資料庫,可以讓使用者直接使用該工具,設定自己定義的船型規格,並可透過直觀結果找出最符合阻力性能需求的參考母船型,加速工程師和其他使用者在船舶開發初期船形設計的流程,增進開發效率,同時使用者可以透過本設計工具,學習造船工程中非常重要的比例設計法與無因次化觀念。
In naval architecture, spiral design method has been used for decades. In the preliminary design stage, we need to design hull forms after defining the requirement. The hydrostatic and hydrodynamic performances have been finalized such as heeling moment, resistance, seakeeping and part of maneuvring after the design of hull forms is accomplished. As so much performances have been decided, lines and body plans are the most crucial stage in the preliminary design. The elegant, nice and smooth shape not only catches peoples eyes but also
decides the great performance.
The research collates mant series of planing hull and semi-displacement hull forms. With these 14 hull forms, we combined them with 5 different estimation methods, including Radoj{{c}}i{'c}'s, Mercier & Savitsky's, Lahtiharju's, etc. to build up a "Middle-high speed hull forms design assisting tool." With this tool, engineers and designers can easily choose the best reference hull forms and transform into the scale suitable for their need.
[1] E. P. Clement and D. L. Blount, “Resistance tests of a systematic series of planing hull forms,” Trans. SNAME, vol. 71, no. 3, pp. 491–579, 1963.
[2] J. Keuning and J. Gerritsma, “Resistance tests of a series of planing hull forms with 25 degrees deadrise angle,” Int. Shipbuild. Prog., p. 222, 1982.
[3] J. B. Hadler, E. N. Hubble, and H. Holling, “Resistance characteristics of a systematic series of planing hull forms–series 65,” Chesapeake Section Meeting of SNAME, 1974.
[4] L. T. Codega and E. G. Hatchell, “Us coast guard patrol boat (wpb) planning hull feasibility study.,” tech. rep., Naval sea combat systems engineering station, Norfolk, VA, 1984.
[5] B. J. Metcalf, L. Faul, E. Bumiller, and J. Slutsky, “Resistance tests of a systematic series of us coast guard planing hulls,” tech. rep., Naval surface warfare center, Carderock DIV., Bethesda, MD, 2005.
[6] G. Delgado-Saldivar, Experimental investigation of a new series of planing hulls. PhD thesis, Thesis (MA Sc.)–Technical University of Nova Scotia, 1993.
[7] H. Nordstr¨om, “Some tests with models of small vessels. 65,” Mitt. SSPA, G¨oteborg, 1951.
[8] D. De Groot, “Resistance and propulsion of motor-boats,” International Shipbuilding Progress, vol. 2, no. 6, pp. 61–80, 1955.
[9] P. M. Beys, “Series 63, round bottom boats,” tech. rep., Stevens inst. of tech, Hoboken, NJ, Davidson Lab, 1963.
[10] E. P. Clement, “Merit comparisons of the series 64 highspeed displacement hull forms,”tech. rep., David Taylor Model Basin, Washington DC., Hydro-mechanics Lab, 1965.
[11] H. Lindgren and A. Williams, “Systematic tests with small, fast displacement vessels, including a study of the influence of spray strips,” 1969.
[12] W. Marwood and D. Bailey, “Transverse stability of round-bottomed high speed craft underway,” National Physical Laboratory, NPL, Ship Division, Ship Report 98, A Station of the Ministry of Technology, 1968.
[13] D. Bailey, The NPL high speed round bilge displacement hull series: resistance, propulsion, manoeuvring and seakeeping data. Royal Institution of Naval Architects, 1976.
[14] E. Lahtiharju and T. Karppinen, “Resistance and seakeeping characteristics of fast transom stern hulls with systematically varied form,” 1991.
[15] M. Rikard-Bell, “Report of research - october/november 1992,” Tech. Rep. IR 92/1 :1-28, Australian maritime cooperative research centre, 1992.
[16] D. L. Blount and J. McGrath, “Resistance characteristics of semi-displacement mega yacht hull forms,” Trans. RINA, Intl. J. Small Craft Tech, vol. 151, 2009.
[17] J. J. Blok and W. Beukelman, “The high-speed displacement ship systematic series hull forms–seakeeping characteristics,” Society of Naval Architects and Marine Engineers-Transactions, vol. 92, no. 1984, 1984.
[18] J. A. Mercier and D. Savitsky, “Resistance of transom-stern craft in the pre-planing regime,” tech. rep., Stevens INST. of tech, Hoboken, NJ., Davidson Lab, 1973.
[19] D. Radojˇci´c, “An approximate method for calculation of resistance and trim of the planing hulls,” 1985.
[20] D. Radojˇci´c, T. Rodic, and N. Kostic, “Resistance and trim predictions for the npl high speed round bilge displacement hull series,” in International Conference On Power, Performance and Operability of Small Craft, Southampton, UK, 1997.
[21] D. Radojˇci´c, A. Zgradic, M. Kalajdzic, and A. Simic, “Resistance prediction for hard chine hulls in the pre-planing regime,” Polish Maritime Research, 2014.
[22] G. Grigoropoulos and N. T. U. of Athens, “Recent advances in the hydrodynamic design of fast monohulls,” Ship Technology Research, vol. 52, no. 1, pp. 14–33, 2005.
[23] D. L. Blount and J. McGrath, “Resistance characteristics of semi-displacement mega yacht hull forms,” Trans. RINA, Intl. J. Small Craft Tech, vol. 151, 2009.
[24] 黃正利, 邱逢琛, 郭真祥, 陳重盛, 吳聰能, 蔡進發, 薛文証, “兩百噸級快艇船型最佳化研究與船模試驗,” 國立台灣大學嚴慶齡工業發展基金會合設工業研究中心, 1987.
[25] 邱逢琛, “電腦輔助快艇初步設計與性能分析軟體研發計畫,” 經濟部工業局, 1996.
校內:不公開