| 研究生: |
楊仕寬 Yang, Shih-Kuan |
|---|---|
| 論文名稱: |
MOCVD 反應器之熱流場計算及磊晶均勻性分析 Calculation of thermal and flow fields and analysis of epitaxy uniformity in MOCVD reactors |
| 指導教授: |
楊天祥
Yang, Tian-Shiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 144 |
| 中文關鍵詞: | MOCVD 、數值計算 、熱分析 、磊晶均勻性 、最佳化 |
| 外文關鍵詞: | MOCVD, numerical calculation, heat analysis, epitaxy uniformity, optimization |
| 相關次數: | 點閱:156 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有機金屬化學氣相沉積(metal organic chemical vapor deposition, MOCVD)為在晶圓上生長氮化鎵、砷化鎵薄膜的方法。這種薄膜成長的技術需要精準地控制氣體流量、壓力以及加熱器的溫度,確保薄膜的生長速率以及晶圓上的溫度符合製程需求且具備足夠的均勻性。為了達到上述條件,我們期望建立一個具可信度的數值模型來計算MOCVD腔體內的熱流場及化學反應並應用到機台或是製程上的設計。本研究中,主要分為兩個模型。模型一涵蓋較完整的腔體內部構造,而此一模型中包含了三個獨立的環狀加熱源和載盤、晶圓以及製程流道等等,主要目的為用來計算腔體內的熱流場,來獲得晶圓上的溫度分布及流道內壓力及速度等結果。模型二為了節省計算資源,僅將模型一的製程流道獨自建立出來,並運用模型一的溫度計算結果作為邊界條件,計算薄膜成長的化學反應,來獲得薄膜的成長速率以及均勻性。
在初步結果與討論中,我們先將模型一所計算出的晶圓溫度與實驗結果相互驗證,並且也對三個加熱器在不同製程溫度下進行最佳化,使晶圓上的溫度分布更加均勻。建立起具可信度的熱流場模型後,再將溫度與壓力輸出,代入化學沉積的模型作為邊界條件。而在薄膜的成長速率及均勻度上,我們藉著對晶圓圓周(θ)方向積分並除以晶圓自轉一圈所經過時間的方式得到整塊晶圓的平均生長速率。
除了溫度場及化學場的探討,我們也將實際機台所遇到之工程問題放入本文討論,對於工程問題進行案例分析,案例一為晶圓上的溫度高低會受到均熱板公差大小的影響,當填充氣體為氫氣時,公差+0.01mm會使晶圓平均溫度約增加0.2℃,填充氣體為氮氣且在同一公差大小下會使晶圓溫度約有1℃的差異。案例二為加大加熱器保護氣體(heater purge, HP)流量對於薄膜生長速率的影響,在HP流量為3L/min時,薄膜在晶圓上的生長速率較均勻,而當HP加大為15L/min時,薄膜邊緣的生長速率下降,造成不均勻度提升,因此我們針對腔體內的幾何做改變,例如在流道後方開孔使流入製程區域之HP減少,藉此改善措施提升薄膜均勻度。
Metal organic chemical vapor deposition (MOCVD) is the key technique used for developing thin film materials, such as GaAs, InP, and ZnO, on semiconductor wafers. The technique requires the gas flow, heat transfer, and temperature uniformity on the wafer surface to be carefully controlled, so as to ensure that the thin film’s growth rate is appropriate and spatially uniform. To help serve such needs, a reliable numerical model that allows us to accurately calculate the fluid dynamics and heat transfer in the chambers clearly is highly desirable for MOCVD equipment and process design. Moreover, thin film growth also is calculated in our computations. But to overcome the computational resource limitations, we break down the computations into two models. In the first model (Model 1), only the flow and thermal fields are calculated. The temperature distributions on the wafer and ISP surfaces then are extracted and used as the thermal boundary conditions in the second model (Model 2), in which the chemical reactions and film growth are calculated in a reduced computational domain. Through appropriate parameter setting, the results of this numerical approach compare favorably with measurements on actual equipment. Moreover, using this approach, we also study two engineering problems encountered on practical equipment. Specifically, in Case 1 the sensitivity of wafer temperature on the dimensional tolerance of the isothermal plate is examined and is found to be 1 ℃/0.05mm in H2 and 3 ℃/0.05mm in N2 respectively. Meanwhile, in Case 2 we examine how the flowrate of the heater purge gas on the film growth rate, and a sweet range of gas flowrate can be identified.
[1] 陳柏霖, "MOCVD 反應器氮化鎵薄膜成長之三維熱流場分析研究,"碩士論文,機械工程學系,國立交通大學,新竹市,2014.
[2] D. Tsoukalas, Simulation of Semiconductor Processes and Devices 2001: Sispad 2001. Springer Science & Business Media, 2001.
[3] G. Cardone, T. Astarita, and G. M. Carlomagno, "Heat transfer measurements on a rotating disk," International Journal of Rotating Machinery, vol. 3, no. 1, pp. 1-9, 1997.
[4] S.-Z. Mei, Q. Wang, M.-L. Hao, J.-K. Xu, H.-L. Xiao, and C. Feng, "Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling," Chinese Physics Letters, vol. 35, no. 9, p. 098101, 2018.
[5] 楊啟榮, "LED製程與應用技術,"機電科技學系,國立臺灣師範大學,台北市,2018. [Online].Available:http://mems.mt.ntnu.edu.tw/document/LED%E8%A3%BD%E7%A8%8B%E8%88%87%E5%85%B6%E6%87%89%E7%94%A8%E6%8A%80%E8%A1%93%E5%8F%B0%E5%B8%AB%E5%A4%A7%E6%A9%9F%E9%9B%BB%E7%B3%BB%E6%A5%8A%E5%95%9F%E6%A6%AE.pdf;2021/12/31下載
[6] HonWay Materials,"單晶與多晶?,"2021.[Online].Available: https://honwaygroup.com/%E5%96%AE%E6%99%B6%E8%88%87%E5%A4%9A%E6%99%B6%EF%BC%9F/;2021/12/30下載
[7] J. E. John, Gas dynamics.MeiYa,1984.
[8] M.-L. Tsai, C.-C. Fang, and L.-Y. Lee, "Numerical simulation of the temperature distribution in a planetary MOCVD reactor," Chemical Engineering and Processing: Process Intensification, vol. 81, pp. 48-58, 2014.
[9] 鍾哲允, "在 MOCVD 反應器中各種流速對流動特性的影響,"碩士論文,機械工程學系,國立成功大學,台南市,2015.
[10] J. Zheng, H. Fang, Z. Zhang, J. Yang, Z. Gan, and H. Yan, "Uniformity analysis of temperature distribution in an industrial MOCVD reactor," Crystal Research and Technology, vol. 51, no. 10, pp. 617-626, 2016.
[11] L. Zhao, Z. Li, R. Guo, L. Feng, L. Lu, and X. Fu, "Simulation and Optimization of Temperature Field in Large-Sized MOCVD Reactor by Resistance Heating," in IOP Conference Series: Materials Science and Engineering, 2019, vol. 538, no. 1: IOP Publishing, p. 012035.
[12] Y.-X. Qu, B. Wang, S.-G. Hu, X.-F. Wu, Z.-M. Li, and Z.-J. Tang, "Analysis and design of resistance-wire heater in MOCVD reactor," Journal of Central South University, vol. 21, no. 9, pp. 3518-3524, 2014.
[13] J. Li, T. Luo, H. Wen, J. Deng, M. Wu, and Y. Li, "Design and regularity research of MOCVD heating plate based on experiments and simulations," Vacuum, vol. 174, p. 109174, 2020.
[14] R. Pawlowski, C. Theodoropoulos, A. Salinger, T. Mountziaris, and H. Moffat, "Fundamental models of the metalorganic vapor-phase epitaxy of gallium nitride and their use in reactor design," Journal of Crystal Growth, vol. 221, no. 1-4, pp. 622-628, 2000.
[15] A. Red'kin, V. Tatsii, Z. Makovei, A. Gruzintsev, and E. Yakimov, "Chemical vapor deposition of GaN from gallium and ammonium chloride," Inorganic materials, vol. 40, no. 10, pp. 1049-1053, 2004.
[16] R. P. Parikh and R. A. Adomaitis, "An overview of gallium nitride growth chemistry and its effect on reactor design: Application to a planetary radial-flow CVD system," Journal of crystal growth, vol. 286, no. 2, pp. 259-278, 2006.
[17] R. P. Parikh, R. A. Adomaitis, M. E. Aumer, D. P. Partlow, D. B. Thomson, and G. W. Rubloff, "Validating gallium nitride growth kinetics using a precursor delivery showerhead as a novel chemical reactor," Journal of crystal growth, vol. 296, no. 1, pp. 15-26, 2006.
[18] 林育辰, "化學氣相沉積反應器之數值模擬,"碩士論文,機械工程學系,國立交通大學,新竹市,2012.
[19] R. Zuo, H. Yu, N. Xu, and X. He, "Influence of gas mixing and heating on gas-phase reactions in GaN MOCVD growth," ECS Journal of Solid State Science and Technology, vol. 1, no. 1, p. P46, 2012.
[20] J. Meng and Y. Jaluria, "Numerical simulation of GaN growth in a metalorganic chemical vapor deposition process," Journal of Manufacturing Science and Engineering, vol. 135, no. 6, 2013.
[21] H. Fang, Z. Zhang, Y. Pan, R. Ma, S. Liu, and M. Wang, "Systematic study of epitaxy growth uniformity in a specific MOCVD reactor," Crystal Research and Technology, vol. 49, no. 11, pp. 907-918, 2014.
[22] Z. Zhang, H. Fang, Q. Yao, H. Yan, and Z. Gan, "Species transport and chemical reaction in a MOCVD reactor and their influence on the GaN growth uniformity," Journal of Crystal Growth, vol. 454, pp. 87-95, 2016.
[23] C.-K. Hu, C.-J. Chen, T.-C. Wei, T.-T. Li, and C.-Y. Huang, "Numerical verification of gallium nitride thin-film growth in a large MOCVD reactor," Coatings, vol. 7, no. 8, p. 112, 2017.
[24] K. Pu, X. Dai, D. Miao, S. Wu, T. Zhao, and Y. Hao, "A kinetics model for MOCVD deposition of AlN film based on Grove theory," Journal of Crystal Growth, vol. 478, pp. 42-46, 2017.
[25] J. Li, Z.-Y. Fei, Y.-F. Xu, J. Wang, and B.-F. Fan, "Study on the optimization of the deposition rate of planetary GaN-MOCVD films based on CFD simulation and the corresponding surface model," Royal Society open science, vol. 5, no. 2, p. 171757, 2018.
[26] Y. Gou, J. Wang, Y. Cheng, Y. Guo, X. Xiao, and S. Zhou, "A Modeling and Experimental Study on the Growth of VCSEL Materials Using an 8× 6 Inch Planetary MOCVD Reactor," Coatings, vol. 10, no. 8, p. 797, 2020.
[27] D. Sengupta, S. Mazumder, W. Kuykendall, and S. A. Lowry, "Combined ab initio quantum chemistry and computational fluid dynamics calculations for prediction of gallium nitride growth," Journal of crystal growth, vol. 279, no. 3-4, pp. 369-382, 2005.
[28] C. Soong, "Gasdynamic characteristics and thermal-flow design of metal organic chemical vapor deposition reactors for semiconductor thin-films," Today, vol. 25, no. 3, pp. 71-82, 1993.
[29] J. B. Hudson, Surface science: an introduction. John Wiley & Sons, 1998.
[30] J. Palisaitis, "Electron energy loss spectroscopy of III-nitride semiconductors," Linköping University Electronic Press, 2011.
[31] M. Masi, M. Di Stanislao, and A. Veneroni, "Fluid-dynamics during vapor epitaxy and modeling," Progress in crystal growth and characterization of materials, vol. 47, no. 2-3, pp. 239-270, 2003.
[32] ShinEtsu MicroSi, "PBN / PG Heaters." [Online]. Available:https://www.microsi.com/solutions-products/pbn/pbn-pg-heaters/;2021/12/28下載
[33] Ferrotec Holdings Corporation, "Silicon Wafers." [Online]. Available: https://www.ferrotec-global.com/tech_1_2.php; 2021/09/28下載
[34] 大陽日酸系統科技, "Word -class MOCVD system." [Online]. Available: https://www.mocvd.jp/en/;2021/09/28下載
[35] i創科技, "Injector." [Online]. Available: https://itritech.itri.org.tw/blog/mocvd/218_1-1/;2021/09/28下載
[36] I. Przhevalskii, S. Y. Karpov, and Y. N. Makarov, "Thermodynamic properties of group-III nitrides and related species," Materials Research Society Internet Journal of Nitride Semiconductor Research, vol. 3, 1998.
[37] T. J. Mountziaris and K. F. Jensen, "Gas‐phase and surface reaction mechanisms in MOCVD of GaAs with trimethyl‐gallium and arsine," Journal of The Electrochemical Society, vol. 138, no. 8, p. 2426, 1991.
[38] S. Holzer, "Optimization for Enhanced Thermal Technology CAD Purposes," no. Chemical Vapor Deposition, 2007. [Online]. Available: https://www.iue.tuwien.ac.at/phd/holzer/node41.html;2021/10/30下載
[39] 莊達人 , VLSI 製造技術. 高立出版, 2002.